Geometric Control of the Robin Laplacian Eigenvalues: The Case of Negative Boundary Parameter

This paper is motivated by the study of the existence of optimal domains maximizing the k th Robin Laplacian eigenvalue among sets of prescribed measure, in the case of a negative boundary parameter. We answer positively to this question and prove an existence result in the class of measurable sets...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2020-12, Vol.30 (4), p.4356-4385
Hauptverfasser: Bucur, Dorin, Cito, Simone
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4385
container_issue 4
container_start_page 4356
container_title The Journal of Geometric Analysis
container_volume 30
creator Bucur, Dorin
Cito, Simone
description This paper is motivated by the study of the existence of optimal domains maximizing the k th Robin Laplacian eigenvalue among sets of prescribed measure, in the case of a negative boundary parameter. We answer positively to this question and prove an existence result in the class of measurable sets and for quite general spectral functionals. The key tools of our analysis rely on tight isodiametric and isoperimetric geometric controls of the eigenvalues. In two dimensions of the space, under simply connectedness assumptions, further qualitative properties are obtained on the optimal sets.
doi_str_mv 10.1007/s12220-019-00245-9
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04723995v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707340068</galeid><sourcerecordid>A707340068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-78858de3750559f9c438488da36b3051a26359ddaafac51f83c8536ab2be80803</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxU1poWnaL9CToKcenI4ky5Z62y75U1iSEFLopYhZebxR8EpbybvQb19tHNJbmYNmht8bnnhV9ZHDGQfovmQuhIAauKkBRKNq86o64Uo9jT9flx4U1K0R7dvqXc6PAE0rm-6k-nVJcUtT8o4tY5hSHFkc2PRA7C6ufWAr3I3oPAZ27jcUDjjuKX9l9wVYYqYjfE0bnPyB2Le4Dz2mP-wWE5ajlN5XbwYcM314fk-rHxfn98urenVz-X25WNVOGjHVndZK9yQ7BcXyYFwjdaN1j7JdS1AcRSuV6XvEAZ3ig5ZOK9niWqxJgwZ5Wn2e7z7gaHfJb4sLG9Hbq8XKHnfQdEIaow68sJ9mdpfi7_KZyT7GfQrFnhVNJzUIyUWhzmZqgyNZH4Y4JXSletp6FwMNvuwXHXSyAWh1EYhZ4FLMOdHw4oODPWZk54xsycg-ZWRNEclZlAscNpT-efmP6i861ZG_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473802312</pqid></control><display><type>article</type><title>Geometric Control of the Robin Laplacian Eigenvalues: The Case of Negative Boundary Parameter</title><source>Springer Nature - Complete Springer Journals</source><creator>Bucur, Dorin ; Cito, Simone</creator><creatorcontrib>Bucur, Dorin ; Cito, Simone</creatorcontrib><description>This paper is motivated by the study of the existence of optimal domains maximizing the k th Robin Laplacian eigenvalue among sets of prescribed measure, in the case of a negative boundary parameter. We answer positively to this question and prove an existence result in the class of measurable sets and for quite general spectral functionals. The key tools of our analysis rely on tight isodiametric and isoperimetric geometric controls of the eigenvalues. In two dimensions of the space, under simply connectedness assumptions, further qualitative properties are obtained on the optimal sets.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-019-00245-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Analysis of PDEs ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Eigenvalues ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Mathematics ; Mathematics and Statistics ; Optimization ; Parameters ; Set theory</subject><ispartof>The Journal of Geometric Analysis, 2020-12, Vol.30 (4), p.4356-4385</ispartof><rights>Mathematica Josephina, Inc. 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Mathematica Josephina, Inc. 2019.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-78858de3750559f9c438488da36b3051a26359ddaafac51f83c8536ab2be80803</citedby><cites>FETCH-LOGICAL-c392t-78858de3750559f9c438488da36b3051a26359ddaafac51f83c8536ab2be80803</cites><orcidid>0000-0002-8331-8481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-019-00245-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-019-00245-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04723995$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bucur, Dorin</creatorcontrib><creatorcontrib>Cito, Simone</creatorcontrib><title>Geometric Control of the Robin Laplacian Eigenvalues: The Case of Negative Boundary Parameter</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>This paper is motivated by the study of the existence of optimal domains maximizing the k th Robin Laplacian eigenvalue among sets of prescribed measure, in the case of a negative boundary parameter. We answer positively to this question and prove an existence result in the class of measurable sets and for quite general spectral functionals. The key tools of our analysis rely on tight isodiametric and isoperimetric geometric controls of the eigenvalues. In two dimensions of the space, under simply connectedness assumptions, further qualitative properties are obtained on the optimal sets.</description><subject>Abstract Harmonic Analysis</subject><subject>Analysis of PDEs</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Eigenvalues</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Set theory</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU9r3DAQxU1poWnaL9CToKcenI4ky5Z62y75U1iSEFLopYhZebxR8EpbybvQb19tHNJbmYNmht8bnnhV9ZHDGQfovmQuhIAauKkBRKNq86o64Uo9jT9flx4U1K0R7dvqXc6PAE0rm-6k-nVJcUtT8o4tY5hSHFkc2PRA7C6ufWAr3I3oPAZ27jcUDjjuKX9l9wVYYqYjfE0bnPyB2Le4Dz2mP-wWE5ajlN5XbwYcM314fk-rHxfn98urenVz-X25WNVOGjHVndZK9yQ7BcXyYFwjdaN1j7JdS1AcRSuV6XvEAZ3ig5ZOK9niWqxJgwZ5Wn2e7z7gaHfJb4sLG9Hbq8XKHnfQdEIaow68sJ9mdpfi7_KZyT7GfQrFnhVNJzUIyUWhzmZqgyNZH4Y4JXSletp6FwMNvuwXHXSyAWh1EYhZ4FLMOdHw4oODPWZk54xsycg-ZWRNEclZlAscNpT-efmP6i861ZG_</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Bucur, Dorin</creator><creator>Cito, Simone</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8331-8481</orcidid></search><sort><creationdate>20201201</creationdate><title>Geometric Control of the Robin Laplacian Eigenvalues: The Case of Negative Boundary Parameter</title><author>Bucur, Dorin ; Cito, Simone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-78858de3750559f9c438488da36b3051a26359ddaafac51f83c8536ab2be80803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Analysis of PDEs</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Eigenvalues</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Set theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bucur, Dorin</creatorcontrib><creatorcontrib>Cito, Simone</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bucur, Dorin</au><au>Cito, Simone</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric Control of the Robin Laplacian Eigenvalues: The Case of Negative Boundary Parameter</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>30</volume><issue>4</issue><spage>4356</spage><epage>4385</epage><pages>4356-4385</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>This paper is motivated by the study of the existence of optimal domains maximizing the k th Robin Laplacian eigenvalue among sets of prescribed measure, in the case of a negative boundary parameter. We answer positively to this question and prove an existence result in the class of measurable sets and for quite general spectral functionals. The key tools of our analysis rely on tight isodiametric and isoperimetric geometric controls of the eigenvalues. In two dimensions of the space, under simply connectedness assumptions, further qualitative properties are obtained on the optimal sets.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-019-00245-9</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-8331-8481</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of Geometric Analysis, 2020-12, Vol.30 (4), p.4356-4385
issn 1050-6926
1559-002X
language eng
recordid cdi_hal_primary_oai_HAL_hal_04723995v1
source Springer Nature - Complete Springer Journals
subjects Abstract Harmonic Analysis
Analysis of PDEs
Convex and Discrete Geometry
Differential Geometry
Dynamical Systems and Ergodic Theory
Eigenvalues
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Mathematics
Mathematics and Statistics
Optimization
Parameters
Set theory
title Geometric Control of the Robin Laplacian Eigenvalues: The Case of Negative Boundary Parameter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20Control%20of%20the%20Robin%20Laplacian%20Eigenvalues:%20The%20Case%20of%20Negative%20Boundary%20Parameter&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=Bucur,%20Dorin&rft.date=2020-12-01&rft.volume=30&rft.issue=4&rft.spage=4356&rft.epage=4385&rft.pages=4356-4385&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-019-00245-9&rft_dat=%3Cgale_hal_p%3EA707340068%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473802312&rft_id=info:pmid/&rft_galeid=A707340068&rfr_iscdi=true