The effect of sensory feedback on crayfish posture and locomotion: II. Neuromechanical simulation of closing the loop

Neuromechanical simulation was used to determine whether proposed thoracic circuit mechanisms for the control of leg elevation and depression in crayfish could account for the responses of an experimental hybrid neuromechanical preparation when the proprioceptive feedback loop was open and closed. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurophysiology 2015-03, Vol.113 (6), p.1772-1783
Hauptverfasser: Bacqué-Cazenave, Julien, Chung, Bryce, Cofer, David W, Cattaert, Daniel, Edwards, Donald H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1783
container_issue 6
container_start_page 1772
container_title Journal of neurophysiology
container_volume 113
creator Bacqué-Cazenave, Julien
Chung, Bryce
Cofer, David W
Cattaert, Daniel
Edwards, Donald H
description Neuromechanical simulation was used to determine whether proposed thoracic circuit mechanisms for the control of leg elevation and depression in crayfish could account for the responses of an experimental hybrid neuromechanical preparation when the proprioceptive feedback loop was open and closed. The hybrid neuromechanical preparation consisted of a computational model of the fifth crayfish leg driven in real time by the experimentally recorded activity of the levator and depressor (Lev/Dep) nerves of an in vitro preparation of the crayfish thoracic nerve cord. Up and down movements of the model leg evoked by motor nerve activity released and stretched the model coxobasal chordotonal organ (CBCO); variations in the CBCO length were used to drive identical variations in the length of the live CBCO in the in vitro preparation. CBCO afferent responses provided proprioceptive feedback to affect the thoracic motor output. Experiments performed with this hybrid neuromechanical preparation were simulated with a neuromechanical model in which a computational circuit model represented the relevant thoracic circuitry. Model simulations were able to reproduce the hybrid neuromechanical experimental results to show that proposed circuit mechanisms with sensory feedback could account for resistance reflexes displayed in the quiescent state and for reflex reversal and spontaneous Lev/Dep bursting seen in the active state.
doi_str_mv 10.1152/jn.00870.2014
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04723749v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1664195180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-2b23f43587e20a74951f43b526ebff4f7d83ceab78dbcda5a3d1f9ccfd5106fc3</originalsourceid><addsrcrecordid>eNo9kUFvGyEQRlGVqnHSHnuNOKaHdQdYzDq3KEobS1Z7Sc-IZYd6HRYc2I3kf1-2TnJimHl6M9JHyFcGS8Yk_74PS4BGwZIDqz-QRenxisl1c0YWAKUWoNQ5uch5DwBKAv9EzrmUkq9qsSDT4w4pOod2pNHRjCHHdKQOsWuNfaIxUJvM0fV5Rw8xj1NCakJHfbRxiGMfww3dbJb0F04pDmh3JvTWeJr7YfJmns9a62Puw186lmU-xsNn8tEZn_HL63tJ_vy4f7x7qLa_f27ubreVFVyNFW-5cLWQjUIORtVrycq3Ladj61ztVNcIi6ZVTdfazkgjOubW1rpOMlg5Ky7Jt5N3Z7w-pH4w6aij6fXD7VbPPagVF0X8wgp7fWIPKT5PmEc99Nmi9yZgnLJmq1XNygUNFLQ6oTbFnBO6dzcDPaei90H_T0XPqRT-6lU9tQN27_RbDOIfzUKI_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664195180</pqid></control><display><type>article</type><title>The effect of sensory feedback on crayfish posture and locomotion: II. Neuromechanical simulation of closing the loop</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Bacqué-Cazenave, Julien ; Chung, Bryce ; Cofer, David W ; Cattaert, Daniel ; Edwards, Donald H</creator><creatorcontrib>Bacqué-Cazenave, Julien ; Chung, Bryce ; Cofer, David W ; Cattaert, Daniel ; Edwards, Donald H</creatorcontrib><description>Neuromechanical simulation was used to determine whether proposed thoracic circuit mechanisms for the control of leg elevation and depression in crayfish could account for the responses of an experimental hybrid neuromechanical preparation when the proprioceptive feedback loop was open and closed. The hybrid neuromechanical preparation consisted of a computational model of the fifth crayfish leg driven in real time by the experimentally recorded activity of the levator and depressor (Lev/Dep) nerves of an in vitro preparation of the crayfish thoracic nerve cord. Up and down movements of the model leg evoked by motor nerve activity released and stretched the model coxobasal chordotonal organ (CBCO); variations in the CBCO length were used to drive identical variations in the length of the live CBCO in the in vitro preparation. CBCO afferent responses provided proprioceptive feedback to affect the thoracic motor output. Experiments performed with this hybrid neuromechanical preparation were simulated with a neuromechanical model in which a computational circuit model represented the relevant thoracic circuitry. Model simulations were able to reproduce the hybrid neuromechanical experimental results to show that proposed circuit mechanisms with sensory feedback could account for resistance reflexes displayed in the quiescent state and for reflex reversal and spontaneous Lev/Dep bursting seen in the active state.</description><identifier>ISSN: 0022-3077</identifier><identifier>EISSN: 1522-1598</identifier><identifier>DOI: 10.1152/jn.00870.2014</identifier><identifier>PMID: 25552643</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Animals ; Astacoidea ; Central Pattern Generators - physiology ; Feedback, Sensory ; Life Sciences ; Locomotion ; Models, Neurological ; Motor Neurons - physiology ; Muscle, Skeletal - innervation ; Muscle, Skeletal - physiology ; Neurons, Afferent - physiology ; Posture ; Thorax - innervation</subject><ispartof>Journal of neurophysiology, 2015-03, Vol.113 (6), p.1772-1783</ispartof><rights>Copyright © 2015 the American Physiological Society.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-2b23f43587e20a74951f43b526ebff4f7d83ceab78dbcda5a3d1f9ccfd5106fc3</citedby><cites>FETCH-LOGICAL-c327t-2b23f43587e20a74951f43b526ebff4f7d83ceab78dbcda5a3d1f9ccfd5106fc3</cites><orcidid>0000-0001-9917-8885</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3039,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25552643$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04723749$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bacqué-Cazenave, Julien</creatorcontrib><creatorcontrib>Chung, Bryce</creatorcontrib><creatorcontrib>Cofer, David W</creatorcontrib><creatorcontrib>Cattaert, Daniel</creatorcontrib><creatorcontrib>Edwards, Donald H</creatorcontrib><title>The effect of sensory feedback on crayfish posture and locomotion: II. Neuromechanical simulation of closing the loop</title><title>Journal of neurophysiology</title><addtitle>J Neurophysiol</addtitle><description>Neuromechanical simulation was used to determine whether proposed thoracic circuit mechanisms for the control of leg elevation and depression in crayfish could account for the responses of an experimental hybrid neuromechanical preparation when the proprioceptive feedback loop was open and closed. The hybrid neuromechanical preparation consisted of a computational model of the fifth crayfish leg driven in real time by the experimentally recorded activity of the levator and depressor (Lev/Dep) nerves of an in vitro preparation of the crayfish thoracic nerve cord. Up and down movements of the model leg evoked by motor nerve activity released and stretched the model coxobasal chordotonal organ (CBCO); variations in the CBCO length were used to drive identical variations in the length of the live CBCO in the in vitro preparation. CBCO afferent responses provided proprioceptive feedback to affect the thoracic motor output. Experiments performed with this hybrid neuromechanical preparation were simulated with a neuromechanical model in which a computational circuit model represented the relevant thoracic circuitry. Model simulations were able to reproduce the hybrid neuromechanical experimental results to show that proposed circuit mechanisms with sensory feedback could account for resistance reflexes displayed in the quiescent state and for reflex reversal and spontaneous Lev/Dep bursting seen in the active state.</description><subject>Animals</subject><subject>Astacoidea</subject><subject>Central Pattern Generators - physiology</subject><subject>Feedback, Sensory</subject><subject>Life Sciences</subject><subject>Locomotion</subject><subject>Models, Neurological</subject><subject>Motor Neurons - physiology</subject><subject>Muscle, Skeletal - innervation</subject><subject>Muscle, Skeletal - physiology</subject><subject>Neurons, Afferent - physiology</subject><subject>Posture</subject><subject>Thorax - innervation</subject><issn>0022-3077</issn><issn>1522-1598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kUFvGyEQRlGVqnHSHnuNOKaHdQdYzDq3KEobS1Z7Sc-IZYd6HRYc2I3kf1-2TnJimHl6M9JHyFcGS8Yk_74PS4BGwZIDqz-QRenxisl1c0YWAKUWoNQ5uch5DwBKAv9EzrmUkq9qsSDT4w4pOod2pNHRjCHHdKQOsWuNfaIxUJvM0fV5Rw8xj1NCakJHfbRxiGMfww3dbJb0F04pDmh3JvTWeJr7YfJmns9a62Puw186lmU-xsNn8tEZn_HL63tJ_vy4f7x7qLa_f27ubreVFVyNFW-5cLWQjUIORtVrycq3Ladj61ztVNcIi6ZVTdfazkgjOubW1rpOMlg5Ky7Jt5N3Z7w-pH4w6aij6fXD7VbPPagVF0X8wgp7fWIPKT5PmEc99Nmi9yZgnLJmq1XNygUNFLQ6oTbFnBO6dzcDPaei90H_T0XPqRT-6lU9tQN27_RbDOIfzUKI_Q</recordid><startdate>20150315</startdate><enddate>20150315</enddate><creator>Bacqué-Cazenave, Julien</creator><creator>Chung, Bryce</creator><creator>Cofer, David W</creator><creator>Cattaert, Daniel</creator><creator>Edwards, Donald H</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9917-8885</orcidid></search><sort><creationdate>20150315</creationdate><title>The effect of sensory feedback on crayfish posture and locomotion: II. Neuromechanical simulation of closing the loop</title><author>Bacqué-Cazenave, Julien ; Chung, Bryce ; Cofer, David W ; Cattaert, Daniel ; Edwards, Donald H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-2b23f43587e20a74951f43b526ebff4f7d83ceab78dbcda5a3d1f9ccfd5106fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Astacoidea</topic><topic>Central Pattern Generators - physiology</topic><topic>Feedback, Sensory</topic><topic>Life Sciences</topic><topic>Locomotion</topic><topic>Models, Neurological</topic><topic>Motor Neurons - physiology</topic><topic>Muscle, Skeletal - innervation</topic><topic>Muscle, Skeletal - physiology</topic><topic>Neurons, Afferent - physiology</topic><topic>Posture</topic><topic>Thorax - innervation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bacqué-Cazenave, Julien</creatorcontrib><creatorcontrib>Chung, Bryce</creatorcontrib><creatorcontrib>Cofer, David W</creatorcontrib><creatorcontrib>Cattaert, Daniel</creatorcontrib><creatorcontrib>Edwards, Donald H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bacqué-Cazenave, Julien</au><au>Chung, Bryce</au><au>Cofer, David W</au><au>Cattaert, Daniel</au><au>Edwards, Donald H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of sensory feedback on crayfish posture and locomotion: II. Neuromechanical simulation of closing the loop</atitle><jtitle>Journal of neurophysiology</jtitle><addtitle>J Neurophysiol</addtitle><date>2015-03-15</date><risdate>2015</risdate><volume>113</volume><issue>6</issue><spage>1772</spage><epage>1783</epage><pages>1772-1783</pages><issn>0022-3077</issn><eissn>1522-1598</eissn><abstract>Neuromechanical simulation was used to determine whether proposed thoracic circuit mechanisms for the control of leg elevation and depression in crayfish could account for the responses of an experimental hybrid neuromechanical preparation when the proprioceptive feedback loop was open and closed. The hybrid neuromechanical preparation consisted of a computational model of the fifth crayfish leg driven in real time by the experimentally recorded activity of the levator and depressor (Lev/Dep) nerves of an in vitro preparation of the crayfish thoracic nerve cord. Up and down movements of the model leg evoked by motor nerve activity released and stretched the model coxobasal chordotonal organ (CBCO); variations in the CBCO length were used to drive identical variations in the length of the live CBCO in the in vitro preparation. CBCO afferent responses provided proprioceptive feedback to affect the thoracic motor output. Experiments performed with this hybrid neuromechanical preparation were simulated with a neuromechanical model in which a computational circuit model represented the relevant thoracic circuitry. Model simulations were able to reproduce the hybrid neuromechanical experimental results to show that proposed circuit mechanisms with sensory feedback could account for resistance reflexes displayed in the quiescent state and for reflex reversal and spontaneous Lev/Dep bursting seen in the active state.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>25552643</pmid><doi>10.1152/jn.00870.2014</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9917-8885</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3077
ispartof Journal of neurophysiology, 2015-03, Vol.113 (6), p.1772-1783
issn 0022-3077
1522-1598
language eng
recordid cdi_hal_primary_oai_HAL_hal_04723749v1
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Animals
Astacoidea
Central Pattern Generators - physiology
Feedback, Sensory
Life Sciences
Locomotion
Models, Neurological
Motor Neurons - physiology
Muscle, Skeletal - innervation
Muscle, Skeletal - physiology
Neurons, Afferent - physiology
Posture
Thorax - innervation
title The effect of sensory feedback on crayfish posture and locomotion: II. Neuromechanical simulation of closing the loop
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A34%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20sensory%20feedback%20on%20crayfish%20posture%20and%20locomotion:%20II.%20Neuromechanical%20simulation%20of%20closing%20the%20loop&rft.jtitle=Journal%20of%20neurophysiology&rft.au=Bacqu%C3%A9-Cazenave,%20Julien&rft.date=2015-03-15&rft.volume=113&rft.issue=6&rft.spage=1772&rft.epage=1783&rft.pages=1772-1783&rft.issn=0022-3077&rft.eissn=1522-1598&rft_id=info:doi/10.1152/jn.00870.2014&rft_dat=%3Cproquest_hal_p%3E1664195180%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664195180&rft_id=info:pmid/25552643&rfr_iscdi=true