Statistical indicators for the optimal prediction of failure times of stochastic reliability systems: A rational expectations-based approach

We introduce a method to estimate the failure time of a class of weighted k-out-of-n systems using the idea of rational expectations, which to the best of our knowledge is a new approach, not found elsewhere in the existing literature. This paper explores the predictive power of several statistical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2025-01, Vol.689, p.121483, Article 121483
Hauptverfasser: Riccioni, Jessica, Andersen, Jorgen-Vitting, Cerqueti, Roy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 121483
container_title Information sciences
container_volume 689
creator Riccioni, Jessica
Andersen, Jorgen-Vitting
Cerqueti, Roy
description We introduce a method to estimate the failure time of a class of weighted k-out-of-n systems using the idea of rational expectations, which to the best of our knowledge is a new approach, not found elsewhere in the existing literature. This paper explores the predictive power of several statistical indicators (variance, skewness, kurtosis, Gini coefficient, entropy) and shows how they perform differently as the system approaches global failure. The proposed method is shown to outperform a benchmark prediction model obtained without rational expectations, and our results offer a panoramic view of the predictive power of the statistical indicators under different assumptions about the initial weight distributions.
doi_str_mv 10.1016/j.ins.2024.121483
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04723579v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025524013975</els_id><sourcerecordid>oai_HAL_hal_04723579v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-74640976acea149b4ecf68db483b46344093ecbbde1bfd5548d95aeac167fab03</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhHMAifLzANx85ZBgJ47TwKmqgCJV4gCcrbWzUVylcWSbir4DD41DEEdOq93ZGWm-JLlmNGOUidtdZgaf5TTnGcsZXxYnyYLSnKY0L8uz5Nz7HaWUV0Iskq_XAMH4YDT0xAxNnME6T1rrSOiQ2DGYfZRGh1ELxg7EtqQF0384JFFDPx18sLqDKYY47A0o05twJP7oA-79HVkRB5M5JuHniDr8bD5V4LEhMI7Ogu4uk9MWeo9Xv_MieX98eFtv0u3L0_N6tU11XoqQVlxwWlcCNALjteKoW7FsVGyquCh4FAvUSjXIVNuUJV82dQkImomqBUWLi-Rmzu2gl6OLBd1RWjBys9rK6Rbh5EVZ1QcWf9n8q5313mH7Z2BUTrjlTkbccsItZ9zRcz97MJY4GHTSa4ODjghd7C4ba_5xfwNYlI4r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Statistical indicators for the optimal prediction of failure times of stochastic reliability systems: A rational expectations-based approach</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Riccioni, Jessica ; Andersen, Jorgen-Vitting ; Cerqueti, Roy</creator><creatorcontrib>Riccioni, Jessica ; Andersen, Jorgen-Vitting ; Cerqueti, Roy</creatorcontrib><description>We introduce a method to estimate the failure time of a class of weighted k-out-of-n systems using the idea of rational expectations, which to the best of our knowledge is a new approach, not found elsewhere in the existing literature. This paper explores the predictive power of several statistical indicators (variance, skewness, kurtosis, Gini coefficient, entropy) and shows how they perform differently as the system approaches global failure. The proposed method is shown to outperform a benchmark prediction model obtained without rational expectations, and our results offer a panoramic view of the predictive power of the statistical indicators under different assumptions about the initial weight distributions.</description><identifier>ISSN: 0020-0255</identifier><identifier>DOI: 10.1016/j.ins.2024.121483</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Applications ; k-out-of-n weighted systems ; Rational expectations ; Reliability ; Statistical indicators ; Statistics ; System failure forecasting</subject><ispartof>Information sciences, 2025-01, Vol.689, p.121483, Article 121483</ispartof><rights>2024 The Author(s)</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-74640976acea149b4ecf68db483b46344093ecbbde1bfd5548d95aeac167fab03</cites><orcidid>0000-0001-7832-3561 ; 0000-0002-1871-7371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ins.2024.121483$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04723579$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Riccioni, Jessica</creatorcontrib><creatorcontrib>Andersen, Jorgen-Vitting</creatorcontrib><creatorcontrib>Cerqueti, Roy</creatorcontrib><title>Statistical indicators for the optimal prediction of failure times of stochastic reliability systems: A rational expectations-based approach</title><title>Information sciences</title><description>We introduce a method to estimate the failure time of a class of weighted k-out-of-n systems using the idea of rational expectations, which to the best of our knowledge is a new approach, not found elsewhere in the existing literature. This paper explores the predictive power of several statistical indicators (variance, skewness, kurtosis, Gini coefficient, entropy) and shows how they perform differently as the system approaches global failure. The proposed method is shown to outperform a benchmark prediction model obtained without rational expectations, and our results offer a panoramic view of the predictive power of the statistical indicators under different assumptions about the initial weight distributions.</description><subject>Applications</subject><subject>k-out-of-n weighted systems</subject><subject>Rational expectations</subject><subject>Reliability</subject><subject>Statistical indicators</subject><subject>Statistics</subject><subject>System failure forecasting</subject><issn>0020-0255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhHMAifLzANx85ZBgJ47TwKmqgCJV4gCcrbWzUVylcWSbir4DD41DEEdOq93ZGWm-JLlmNGOUidtdZgaf5TTnGcsZXxYnyYLSnKY0L8uz5Nz7HaWUV0Iskq_XAMH4YDT0xAxNnME6T1rrSOiQ2DGYfZRGh1ELxg7EtqQF0384JFFDPx18sLqDKYY47A0o05twJP7oA-79HVkRB5M5JuHniDr8bD5V4LEhMI7Ogu4uk9MWeo9Xv_MieX98eFtv0u3L0_N6tU11XoqQVlxwWlcCNALjteKoW7FsVGyquCh4FAvUSjXIVNuUJV82dQkImomqBUWLi-Rmzu2gl6OLBd1RWjBys9rK6Rbh5EVZ1QcWf9n8q5313mH7Z2BUTrjlTkbccsItZ9zRcz97MJY4GHTSa4ODjghd7C4ba_5xfwNYlI4r</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Riccioni, Jessica</creator><creator>Andersen, Jorgen-Vitting</creator><creator>Cerqueti, Roy</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7832-3561</orcidid><orcidid>https://orcid.org/0000-0002-1871-7371</orcidid></search><sort><creationdate>202501</creationdate><title>Statistical indicators for the optimal prediction of failure times of stochastic reliability systems: A rational expectations-based approach</title><author>Riccioni, Jessica ; Andersen, Jorgen-Vitting ; Cerqueti, Roy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-74640976acea149b4ecf68db483b46344093ecbbde1bfd5548d95aeac167fab03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Applications</topic><topic>k-out-of-n weighted systems</topic><topic>Rational expectations</topic><topic>Reliability</topic><topic>Statistical indicators</topic><topic>Statistics</topic><topic>System failure forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riccioni, Jessica</creatorcontrib><creatorcontrib>Andersen, Jorgen-Vitting</creatorcontrib><creatorcontrib>Cerqueti, Roy</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riccioni, Jessica</au><au>Andersen, Jorgen-Vitting</au><au>Cerqueti, Roy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical indicators for the optimal prediction of failure times of stochastic reliability systems: A rational expectations-based approach</atitle><jtitle>Information sciences</jtitle><date>2025-01</date><risdate>2025</risdate><volume>689</volume><spage>121483</spage><pages>121483-</pages><artnum>121483</artnum><issn>0020-0255</issn><abstract>We introduce a method to estimate the failure time of a class of weighted k-out-of-n systems using the idea of rational expectations, which to the best of our knowledge is a new approach, not found elsewhere in the existing literature. This paper explores the predictive power of several statistical indicators (variance, skewness, kurtosis, Gini coefficient, entropy) and shows how they perform differently as the system approaches global failure. The proposed method is shown to outperform a benchmark prediction model obtained without rational expectations, and our results offer a panoramic view of the predictive power of the statistical indicators under different assumptions about the initial weight distributions.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2024.121483</doi><orcidid>https://orcid.org/0000-0001-7832-3561</orcidid><orcidid>https://orcid.org/0000-0002-1871-7371</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 2025-01, Vol.689, p.121483, Article 121483
issn 0020-0255
language eng
recordid cdi_hal_primary_oai_HAL_hal_04723579v1
source Elsevier ScienceDirect Journals Complete
subjects Applications
k-out-of-n weighted systems
Rational expectations
Reliability
Statistical indicators
Statistics
System failure forecasting
title Statistical indicators for the optimal prediction of failure times of stochastic reliability systems: A rational expectations-based approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A19%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20indicators%20for%20the%20optimal%20prediction%20of%20failure%20times%20of%20stochastic%20reliability%20systems:%20A%20rational%20expectations-based%20approach&rft.jtitle=Information%20sciences&rft.au=Riccioni,%20Jessica&rft.date=2025-01&rft.volume=689&rft.spage=121483&rft.pages=121483-&rft.artnum=121483&rft.issn=0020-0255&rft_id=info:doi/10.1016/j.ins.2024.121483&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04723579v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0020025524013975&rfr_iscdi=true