Statistical indicators for the optimal prediction of failure times of stochastic reliability systems: A rational expectations-based approach
We introduce a method to estimate the failure time of a class of weighted k-out-of-n systems using the idea of rational expectations, which to the best of our knowledge is a new approach, not found elsewhere in the existing literature. This paper explores the predictive power of several statistical...
Gespeichert in:
Veröffentlicht in: | Information sciences 2025-01, Vol.689, p.121483, Article 121483 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 121483 |
container_title | Information sciences |
container_volume | 689 |
creator | Riccioni, Jessica Andersen, Jorgen-Vitting Cerqueti, Roy |
description | We introduce a method to estimate the failure time of a class of weighted k-out-of-n systems using the idea of rational expectations, which to the best of our knowledge is a new approach, not found elsewhere in the existing literature. This paper explores the predictive power of several statistical indicators (variance, skewness, kurtosis, Gini coefficient, entropy) and shows how they perform differently as the system approaches global failure. The proposed method is shown to outperform a benchmark prediction model obtained without rational expectations, and our results offer a panoramic view of the predictive power of the statistical indicators under different assumptions about the initial weight distributions. |
doi_str_mv | 10.1016/j.ins.2024.121483 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04723579v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025524013975</els_id><sourcerecordid>oai_HAL_hal_04723579v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-74640976acea149b4ecf68db483b46344093ecbbde1bfd5548d95aeac167fab03</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhHMAifLzANx85ZBgJ47TwKmqgCJV4gCcrbWzUVylcWSbir4DD41DEEdOq93ZGWm-JLlmNGOUidtdZgaf5TTnGcsZXxYnyYLSnKY0L8uz5Nz7HaWUV0Iskq_XAMH4YDT0xAxNnME6T1rrSOiQ2DGYfZRGh1ELxg7EtqQF0384JFFDPx18sLqDKYY47A0o05twJP7oA-79HVkRB5M5JuHniDr8bD5V4LEhMI7Ogu4uk9MWeo9Xv_MieX98eFtv0u3L0_N6tU11XoqQVlxwWlcCNALjteKoW7FsVGyquCh4FAvUSjXIVNuUJV82dQkImomqBUWLi-Rmzu2gl6OLBd1RWjBys9rK6Rbh5EVZ1QcWf9n8q5313mH7Z2BUTrjlTkbccsItZ9zRcz97MJY4GHTSa4ODjghd7C4ba_5xfwNYlI4r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Statistical indicators for the optimal prediction of failure times of stochastic reliability systems: A rational expectations-based approach</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Riccioni, Jessica ; Andersen, Jorgen-Vitting ; Cerqueti, Roy</creator><creatorcontrib>Riccioni, Jessica ; Andersen, Jorgen-Vitting ; Cerqueti, Roy</creatorcontrib><description>We introduce a method to estimate the failure time of a class of weighted k-out-of-n systems using the idea of rational expectations, which to the best of our knowledge is a new approach, not found elsewhere in the existing literature. This paper explores the predictive power of several statistical indicators (variance, skewness, kurtosis, Gini coefficient, entropy) and shows how they perform differently as the system approaches global failure. The proposed method is shown to outperform a benchmark prediction model obtained without rational expectations, and our results offer a panoramic view of the predictive power of the statistical indicators under different assumptions about the initial weight distributions.</description><identifier>ISSN: 0020-0255</identifier><identifier>DOI: 10.1016/j.ins.2024.121483</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Applications ; k-out-of-n weighted systems ; Rational expectations ; Reliability ; Statistical indicators ; Statistics ; System failure forecasting</subject><ispartof>Information sciences, 2025-01, Vol.689, p.121483, Article 121483</ispartof><rights>2024 The Author(s)</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-74640976acea149b4ecf68db483b46344093ecbbde1bfd5548d95aeac167fab03</cites><orcidid>0000-0001-7832-3561 ; 0000-0002-1871-7371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ins.2024.121483$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04723579$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Riccioni, Jessica</creatorcontrib><creatorcontrib>Andersen, Jorgen-Vitting</creatorcontrib><creatorcontrib>Cerqueti, Roy</creatorcontrib><title>Statistical indicators for the optimal prediction of failure times of stochastic reliability systems: A rational expectations-based approach</title><title>Information sciences</title><description>We introduce a method to estimate the failure time of a class of weighted k-out-of-n systems using the idea of rational expectations, which to the best of our knowledge is a new approach, not found elsewhere in the existing literature. This paper explores the predictive power of several statistical indicators (variance, skewness, kurtosis, Gini coefficient, entropy) and shows how they perform differently as the system approaches global failure. The proposed method is shown to outperform a benchmark prediction model obtained without rational expectations, and our results offer a panoramic view of the predictive power of the statistical indicators under different assumptions about the initial weight distributions.</description><subject>Applications</subject><subject>k-out-of-n weighted systems</subject><subject>Rational expectations</subject><subject>Reliability</subject><subject>Statistical indicators</subject><subject>Statistics</subject><subject>System failure forecasting</subject><issn>0020-0255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhHMAifLzANx85ZBgJ47TwKmqgCJV4gCcrbWzUVylcWSbir4DD41DEEdOq93ZGWm-JLlmNGOUidtdZgaf5TTnGcsZXxYnyYLSnKY0L8uz5Nz7HaWUV0Iskq_XAMH4YDT0xAxNnME6T1rrSOiQ2DGYfZRGh1ELxg7EtqQF0384JFFDPx18sLqDKYY47A0o05twJP7oA-79HVkRB5M5JuHniDr8bD5V4LEhMI7Ogu4uk9MWeo9Xv_MieX98eFtv0u3L0_N6tU11XoqQVlxwWlcCNALjteKoW7FsVGyquCh4FAvUSjXIVNuUJV82dQkImomqBUWLi-Rmzu2gl6OLBd1RWjBys9rK6Rbh5EVZ1QcWf9n8q5313mH7Z2BUTrjlTkbccsItZ9zRcz97MJY4GHTSa4ODjghd7C4ba_5xfwNYlI4r</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Riccioni, Jessica</creator><creator>Andersen, Jorgen-Vitting</creator><creator>Cerqueti, Roy</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7832-3561</orcidid><orcidid>https://orcid.org/0000-0002-1871-7371</orcidid></search><sort><creationdate>202501</creationdate><title>Statistical indicators for the optimal prediction of failure times of stochastic reliability systems: A rational expectations-based approach</title><author>Riccioni, Jessica ; Andersen, Jorgen-Vitting ; Cerqueti, Roy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-74640976acea149b4ecf68db483b46344093ecbbde1bfd5548d95aeac167fab03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Applications</topic><topic>k-out-of-n weighted systems</topic><topic>Rational expectations</topic><topic>Reliability</topic><topic>Statistical indicators</topic><topic>Statistics</topic><topic>System failure forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riccioni, Jessica</creatorcontrib><creatorcontrib>Andersen, Jorgen-Vitting</creatorcontrib><creatorcontrib>Cerqueti, Roy</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riccioni, Jessica</au><au>Andersen, Jorgen-Vitting</au><au>Cerqueti, Roy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical indicators for the optimal prediction of failure times of stochastic reliability systems: A rational expectations-based approach</atitle><jtitle>Information sciences</jtitle><date>2025-01</date><risdate>2025</risdate><volume>689</volume><spage>121483</spage><pages>121483-</pages><artnum>121483</artnum><issn>0020-0255</issn><abstract>We introduce a method to estimate the failure time of a class of weighted k-out-of-n systems using the idea of rational expectations, which to the best of our knowledge is a new approach, not found elsewhere in the existing literature. This paper explores the predictive power of several statistical indicators (variance, skewness, kurtosis, Gini coefficient, entropy) and shows how they perform differently as the system approaches global failure. The proposed method is shown to outperform a benchmark prediction model obtained without rational expectations, and our results offer a panoramic view of the predictive power of the statistical indicators under different assumptions about the initial weight distributions.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2024.121483</doi><orcidid>https://orcid.org/0000-0001-7832-3561</orcidid><orcidid>https://orcid.org/0000-0002-1871-7371</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0255 |
ispartof | Information sciences, 2025-01, Vol.689, p.121483, Article 121483 |
issn | 0020-0255 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04723579v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applications k-out-of-n weighted systems Rational expectations Reliability Statistical indicators Statistics System failure forecasting |
title | Statistical indicators for the optimal prediction of failure times of stochastic reliability systems: A rational expectations-based approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A19%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20indicators%20for%20the%20optimal%20prediction%20of%20failure%20times%20of%20stochastic%20reliability%20systems:%20A%20rational%20expectations-based%20approach&rft.jtitle=Information%20sciences&rft.au=Riccioni,%20Jessica&rft.date=2025-01&rft.volume=689&rft.spage=121483&rft.pages=121483-&rft.artnum=121483&rft.issn=0020-0255&rft_id=info:doi/10.1016/j.ins.2024.121483&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04723579v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0020025524013975&rfr_iscdi=true |