Lower bounds for positive roots and regions of multistationarity in chemical reaction networks
Given a real sparse polynomial system, we present a general framework to find explicit coefficients for which the system has more than one positive solution. Our approach is based on the recent article by Bihan, Santos, and Spaenlehauer (2018). We apply this method to find explicit reaction rate con...
Gespeichert in:
Veröffentlicht in: | Journal of algebra 2020-01, Vol.542, p.367-411 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 411 |
---|---|
container_issue | |
container_start_page | 367 |
container_title | Journal of algebra |
container_volume | 542 |
creator | Bihan, Frédéric Dickenstein, Alicia Giaroli, Magalí |
description | Given a real sparse polynomial system, we present a general framework to find explicit coefficients for which the system has more than one positive solution. Our approach is based on the recent article by Bihan, Santos, and Spaenlehauer (2018). We apply this method to find explicit reaction rate constants and total conservation constants in biochemical reaction networks for which the associated dynamical system is multistationary. |
doi_str_mv | 10.1016/j.jalgebra.2019.10.002 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04723380v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021869319305162</els_id><sourcerecordid>oai_HAL_hal_04723380v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-dfcadc18f4b36e0da2d0e0890431e6a741c81b07f9597b30c7f028b4dcb3c4103</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QXL1sOtkk-7HzVLUCgteFDwZskm2zbrdlCRt6b83S9Wrp4Fn3ndgHoRuCaQESH7fpZ3oV7pxIs2AVBGmANkZmhCoIMny_OMcTSIhSZlX9BJded8BEDJj5QR91vagHW7sblAet9bhrfUmmL3GztrgsRgUdnpl7OCxbfFm1wfjgwgRCGfCEZsBy7XeGCn6GBRy3OBBh4N1X_4aXbSi9_rmZ07R-9Pj22KZ1K_PL4t5nUhasZCoVgolSdmyhuYalMgUaCgrYJToXBSMyJI0ULTVrCoaCrJoISsbpmRDJSNAp-judHcter51ZiPckVth-HJe85EBKzJKS9iTmM1PWems9063fwUCfDTKO_5rlI9GRx79xeLDqajjJ3ujHffS6EFqZZyWgStr_jvxDQVghGE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lower bounds for positive roots and regions of multistationarity in chemical reaction networks</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bihan, Frédéric ; Dickenstein, Alicia ; Giaroli, Magalí</creator><creatorcontrib>Bihan, Frédéric ; Dickenstein, Alicia ; Giaroli, Magalí</creatorcontrib><description>Given a real sparse polynomial system, we present a general framework to find explicit coefficients for which the system has more than one positive solution. Our approach is based on the recent article by Bihan, Santos, and Spaenlehauer (2018). We apply this method to find explicit reaction rate constants and total conservation constants in biochemical reaction networks for which the associated dynamical system is multistationary.</description><identifier>ISSN: 0021-8693</identifier><identifier>EISSN: 1090-266X</identifier><identifier>DOI: 10.1016/j.jalgebra.2019.10.002</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Chemical reaction networks ; Mathematics ; Multistationarity ; Positive solutions ; Sparse polynomial system</subject><ispartof>Journal of algebra, 2020-01, Vol.542, p.367-411</ispartof><rights>2019 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-dfcadc18f4b36e0da2d0e0890431e6a741c81b07f9597b30c7f028b4dcb3c4103</citedby><cites>FETCH-LOGICAL-c394t-dfcadc18f4b36e0da2d0e0890431e6a741c81b07f9597b30c7f028b4dcb3c4103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jalgebra.2019.10.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04723380$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bihan, Frédéric</creatorcontrib><creatorcontrib>Dickenstein, Alicia</creatorcontrib><creatorcontrib>Giaroli, Magalí</creatorcontrib><title>Lower bounds for positive roots and regions of multistationarity in chemical reaction networks</title><title>Journal of algebra</title><description>Given a real sparse polynomial system, we present a general framework to find explicit coefficients for which the system has more than one positive solution. Our approach is based on the recent article by Bihan, Santos, and Spaenlehauer (2018). We apply this method to find explicit reaction rate constants and total conservation constants in biochemical reaction networks for which the associated dynamical system is multistationary.</description><subject>Chemical reaction networks</subject><subject>Mathematics</subject><subject>Multistationarity</subject><subject>Positive solutions</subject><subject>Sparse polynomial system</subject><issn>0021-8693</issn><issn>1090-266X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_QXL1sOtkk-7HzVLUCgteFDwZskm2zbrdlCRt6b83S9Wrp4Fn3ndgHoRuCaQESH7fpZ3oV7pxIs2AVBGmANkZmhCoIMny_OMcTSIhSZlX9BJded8BEDJj5QR91vagHW7sblAet9bhrfUmmL3GztrgsRgUdnpl7OCxbfFm1wfjgwgRCGfCEZsBy7XeGCn6GBRy3OBBh4N1X_4aXbSi9_rmZ07R-9Pj22KZ1K_PL4t5nUhasZCoVgolSdmyhuYalMgUaCgrYJToXBSMyJI0ULTVrCoaCrJoISsbpmRDJSNAp-judHcter51ZiPckVth-HJe85EBKzJKS9iTmM1PWems9063fwUCfDTKO_5rlI9GRx79xeLDqajjJ3ujHffS6EFqZZyWgStr_jvxDQVghGE</recordid><startdate>20200115</startdate><enddate>20200115</enddate><creator>Bihan, Frédéric</creator><creator>Dickenstein, Alicia</creator><creator>Giaroli, Magalí</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20200115</creationdate><title>Lower bounds for positive roots and regions of multistationarity in chemical reaction networks</title><author>Bihan, Frédéric ; Dickenstein, Alicia ; Giaroli, Magalí</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-dfcadc18f4b36e0da2d0e0890431e6a741c81b07f9597b30c7f028b4dcb3c4103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical reaction networks</topic><topic>Mathematics</topic><topic>Multistationarity</topic><topic>Positive solutions</topic><topic>Sparse polynomial system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bihan, Frédéric</creatorcontrib><creatorcontrib>Dickenstein, Alicia</creatorcontrib><creatorcontrib>Giaroli, Magalí</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bihan, Frédéric</au><au>Dickenstein, Alicia</au><au>Giaroli, Magalí</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower bounds for positive roots and regions of multistationarity in chemical reaction networks</atitle><jtitle>Journal of algebra</jtitle><date>2020-01-15</date><risdate>2020</risdate><volume>542</volume><spage>367</spage><epage>411</epage><pages>367-411</pages><issn>0021-8693</issn><eissn>1090-266X</eissn><abstract>Given a real sparse polynomial system, we present a general framework to find explicit coefficients for which the system has more than one positive solution. Our approach is based on the recent article by Bihan, Santos, and Spaenlehauer (2018). We apply this method to find explicit reaction rate constants and total conservation constants in biochemical reaction networks for which the associated dynamical system is multistationary.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jalgebra.2019.10.002</doi><tpages>45</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8693 |
ispartof | Journal of algebra, 2020-01, Vol.542, p.367-411 |
issn | 0021-8693 1090-266X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04723380v1 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Chemical reaction networks Mathematics Multistationarity Positive solutions Sparse polynomial system |
title | Lower bounds for positive roots and regions of multistationarity in chemical reaction networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A51%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20bounds%20for%20positive%20roots%20and%20regions%20of%20multistationarity%20in%20chemical%20reaction%20networks&rft.jtitle=Journal%20of%20algebra&rft.au=Bihan,%20Fr%C3%A9d%C3%A9ric&rft.date=2020-01-15&rft.volume=542&rft.spage=367&rft.epage=411&rft.pages=367-411&rft.issn=0021-8693&rft.eissn=1090-266X&rft_id=info:doi/10.1016/j.jalgebra.2019.10.002&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04723380v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021869319305162&rfr_iscdi=true |