Lower bounds for positive roots and regions of multistationarity in chemical reaction networks

Given a real sparse polynomial system, we present a general framework to find explicit coefficients for which the system has more than one positive solution. Our approach is based on the recent article by Bihan, Santos, and Spaenlehauer (2018). We apply this method to find explicit reaction rate con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebra 2020-01, Vol.542, p.367-411
Hauptverfasser: Bihan, Frédéric, Dickenstein, Alicia, Giaroli, Magalí
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 411
container_issue
container_start_page 367
container_title Journal of algebra
container_volume 542
creator Bihan, Frédéric
Dickenstein, Alicia
Giaroli, Magalí
description Given a real sparse polynomial system, we present a general framework to find explicit coefficients for which the system has more than one positive solution. Our approach is based on the recent article by Bihan, Santos, and Spaenlehauer (2018). We apply this method to find explicit reaction rate constants and total conservation constants in biochemical reaction networks for which the associated dynamical system is multistationary.
doi_str_mv 10.1016/j.jalgebra.2019.10.002
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04723380v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021869319305162</els_id><sourcerecordid>oai_HAL_hal_04723380v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-dfcadc18f4b36e0da2d0e0890431e6a741c81b07f9597b30c7f028b4dcb3c4103</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QXL1sOtkk-7HzVLUCgteFDwZskm2zbrdlCRt6b83S9Wrp4Fn3ndgHoRuCaQESH7fpZ3oV7pxIs2AVBGmANkZmhCoIMny_OMcTSIhSZlX9BJded8BEDJj5QR91vagHW7sblAet9bhrfUmmL3GztrgsRgUdnpl7OCxbfFm1wfjgwgRCGfCEZsBy7XeGCn6GBRy3OBBh4N1X_4aXbSi9_rmZ07R-9Pj22KZ1K_PL4t5nUhasZCoVgolSdmyhuYalMgUaCgrYJToXBSMyJI0ULTVrCoaCrJoISsbpmRDJSNAp-judHcter51ZiPckVth-HJe85EBKzJKS9iTmM1PWems9063fwUCfDTKO_5rlI9GRx79xeLDqajjJ3ujHffS6EFqZZyWgStr_jvxDQVghGE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lower bounds for positive roots and regions of multistationarity in chemical reaction networks</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bihan, Frédéric ; Dickenstein, Alicia ; Giaroli, Magalí</creator><creatorcontrib>Bihan, Frédéric ; Dickenstein, Alicia ; Giaroli, Magalí</creatorcontrib><description>Given a real sparse polynomial system, we present a general framework to find explicit coefficients for which the system has more than one positive solution. Our approach is based on the recent article by Bihan, Santos, and Spaenlehauer (2018). We apply this method to find explicit reaction rate constants and total conservation constants in biochemical reaction networks for which the associated dynamical system is multistationary.</description><identifier>ISSN: 0021-8693</identifier><identifier>EISSN: 1090-266X</identifier><identifier>DOI: 10.1016/j.jalgebra.2019.10.002</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Chemical reaction networks ; Mathematics ; Multistationarity ; Positive solutions ; Sparse polynomial system</subject><ispartof>Journal of algebra, 2020-01, Vol.542, p.367-411</ispartof><rights>2019 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-dfcadc18f4b36e0da2d0e0890431e6a741c81b07f9597b30c7f028b4dcb3c4103</citedby><cites>FETCH-LOGICAL-c394t-dfcadc18f4b36e0da2d0e0890431e6a741c81b07f9597b30c7f028b4dcb3c4103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jalgebra.2019.10.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04723380$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bihan, Frédéric</creatorcontrib><creatorcontrib>Dickenstein, Alicia</creatorcontrib><creatorcontrib>Giaroli, Magalí</creatorcontrib><title>Lower bounds for positive roots and regions of multistationarity in chemical reaction networks</title><title>Journal of algebra</title><description>Given a real sparse polynomial system, we present a general framework to find explicit coefficients for which the system has more than one positive solution. Our approach is based on the recent article by Bihan, Santos, and Spaenlehauer (2018). We apply this method to find explicit reaction rate constants and total conservation constants in biochemical reaction networks for which the associated dynamical system is multistationary.</description><subject>Chemical reaction networks</subject><subject>Mathematics</subject><subject>Multistationarity</subject><subject>Positive solutions</subject><subject>Sparse polynomial system</subject><issn>0021-8693</issn><issn>1090-266X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_QXL1sOtkk-7HzVLUCgteFDwZskm2zbrdlCRt6b83S9Wrp4Fn3ndgHoRuCaQESH7fpZ3oV7pxIs2AVBGmANkZmhCoIMny_OMcTSIhSZlX9BJded8BEDJj5QR91vagHW7sblAet9bhrfUmmL3GztrgsRgUdnpl7OCxbfFm1wfjgwgRCGfCEZsBy7XeGCn6GBRy3OBBh4N1X_4aXbSi9_rmZ07R-9Pj22KZ1K_PL4t5nUhasZCoVgolSdmyhuYalMgUaCgrYJToXBSMyJI0ULTVrCoaCrJoISsbpmRDJSNAp-judHcter51ZiPckVth-HJe85EBKzJKS9iTmM1PWems9063fwUCfDTKO_5rlI9GRx79xeLDqajjJ3ujHffS6EFqZZyWgStr_jvxDQVghGE</recordid><startdate>20200115</startdate><enddate>20200115</enddate><creator>Bihan, Frédéric</creator><creator>Dickenstein, Alicia</creator><creator>Giaroli, Magalí</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20200115</creationdate><title>Lower bounds for positive roots and regions of multistationarity in chemical reaction networks</title><author>Bihan, Frédéric ; Dickenstein, Alicia ; Giaroli, Magalí</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-dfcadc18f4b36e0da2d0e0890431e6a741c81b07f9597b30c7f028b4dcb3c4103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical reaction networks</topic><topic>Mathematics</topic><topic>Multistationarity</topic><topic>Positive solutions</topic><topic>Sparse polynomial system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bihan, Frédéric</creatorcontrib><creatorcontrib>Dickenstein, Alicia</creatorcontrib><creatorcontrib>Giaroli, Magalí</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bihan, Frédéric</au><au>Dickenstein, Alicia</au><au>Giaroli, Magalí</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower bounds for positive roots and regions of multistationarity in chemical reaction networks</atitle><jtitle>Journal of algebra</jtitle><date>2020-01-15</date><risdate>2020</risdate><volume>542</volume><spage>367</spage><epage>411</epage><pages>367-411</pages><issn>0021-8693</issn><eissn>1090-266X</eissn><abstract>Given a real sparse polynomial system, we present a general framework to find explicit coefficients for which the system has more than one positive solution. Our approach is based on the recent article by Bihan, Santos, and Spaenlehauer (2018). We apply this method to find explicit reaction rate constants and total conservation constants in biochemical reaction networks for which the associated dynamical system is multistationary.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jalgebra.2019.10.002</doi><tpages>45</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8693
ispartof Journal of algebra, 2020-01, Vol.542, p.367-411
issn 0021-8693
1090-266X
language eng
recordid cdi_hal_primary_oai_HAL_hal_04723380v1
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Chemical reaction networks
Mathematics
Multistationarity
Positive solutions
Sparse polynomial system
title Lower bounds for positive roots and regions of multistationarity in chemical reaction networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A51%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20bounds%20for%20positive%20roots%20and%20regions%20of%20multistationarity%20in%20chemical%20reaction%20networks&rft.jtitle=Journal%20of%20algebra&rft.au=Bihan,%20Fr%C3%A9d%C3%A9ric&rft.date=2020-01-15&rft.volume=542&rft.spage=367&rft.epage=411&rft.pages=367-411&rft.issn=0021-8693&rft.eissn=1090-266X&rft_id=info:doi/10.1016/j.jalgebra.2019.10.002&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04723380v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021869319305162&rfr_iscdi=true