Good Manufacturing Practice–compliant human induced pluripotent stem cells: from bench to putative clinical products

Few human induced pluripotent stem cell (hiPSC) lines are Good Manufacturing Practice (GMP)-compliant, limiting the clinical use of hiPSC-derived products. Here, we addressed this by establishing and validating an in-house platform to produce GMP-compliant hiPSCs that would be appropriate for produc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cytotherapy (Oxford, England) England), 2024-06, Vol.26 (6), p.556-566
Hauptverfasser: Novoa, Juan J., Westra, Inge M., Steeneveld, Esther, Fonseca Neves, Natascha, Arendzen, Christiaan H., Rajaei, Bahareh, Grundeken, Esmée, Yildiz, Mehmet, van der Valk, Wouter, Salvador, Alison, Carlotti, Françoise, Dijkers, Pascale F., Locher, Heiko, van den Berg, Cathelijne W., Raymond, Karine I., Kirkeby, Agnete, Mummery, Christine L., Rabelink, Ton J., Freund, Christian, Meij, Pauline, Wieles, Brigitte
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 566
container_issue 6
container_start_page 556
container_title Cytotherapy (Oxford, England)
container_volume 26
creator Novoa, Juan J.
Westra, Inge M.
Steeneveld, Esther
Fonseca Neves, Natascha
Arendzen, Christiaan H.
Rajaei, Bahareh
Grundeken, Esmée
Yildiz, Mehmet
van der Valk, Wouter
Salvador, Alison
Carlotti, Françoise
Dijkers, Pascale F.
Locher, Heiko
van den Berg, Cathelijne W.
Raymond, Karine I.
Kirkeby, Agnete
Mummery, Christine L.
Rabelink, Ton J.
Freund, Christian
Meij, Pauline
Wieles, Brigitte
description Few human induced pluripotent stem cell (hiPSC) lines are Good Manufacturing Practice (GMP)-compliant, limiting the clinical use of hiPSC-derived products. Here, we addressed this by establishing and validating an in-house platform to produce GMP-compliant hiPSCs that would be appropriate for producing both allogeneic and autologous hiPSC-derived products. Our standard research protocol for hiPSCs production was adapted and translated into a GMP-compliant platform. In addition to the generation of GMP-compliant hiPSC, the platform entails the methodology for donor recruitment, consent and screening, donor material procurement, hiPSCs manufacture, in-process control, specific QC test validation, QC testing, product release, hiPSCs storage and stability testing. For platform validation, one test run and three production runs were performed. Highest-quality lines were selected to establish master cell banks (MCBs). Two MCBs were successfully released under GMP conditions. They demonstrated safety (sterility, negative mycoplasma, endotoxins 75% of cells expressing markers of undifferentiated state, identical STR profile, normal karyotype in >20 metaphases), purity (negative residual vectors and no plasmid integration in the genome) and potency (expression of at least two of the three markers for each of the three germ layers). In addition, directed differentiation to somitoids (skeletal muscle precursors) and six potential clinical products from all three germ layers was achieved: pancreatic islets (endoderm), kidney organoids and cardiomyocytes (mesoderm), and keratinocytes, GABAergic interneurons and inner-ear organoids (ectoderm). We successfully developed and validated a platform for generating GMP-compliant hiPSC lines. The two MCBs released were shown to differentiate into clinical products relevant for our own and other regenerative medicine interests. [Display omitted]
doi_str_mv 10.1016/j.jcyt.2024.02.021
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04716013v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1465324924000707</els_id><sourcerecordid>2957167930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-1620036e40ae4611bd7f18bf6669666892caff82f63bc669a3f36777e5dedbd93</originalsourceid><addsrcrecordid>eNp9kc1u1DAQxy0Eoh_wAhyQj3DI4q84CeJSVdBW2qoc4Gw59pj1KomD7azUG-_QN-yT4GhLj0gz8mj881-e-SP0jpINJVR-2m_25j5vGGFiQ1gJ-gKdUtE0FaulfLnWsq44E90JOktpTwgjbVu_Rie8FS3ndXeKDlchWHyrp8Vpk5fop1_4eyylN_D458GEcR68njLeLaOesJ_sYsDieSjoHDKUm5RhxAaGIX3GLoYR9zCZHc4Bz0vW2R8Am8FP3ugBzzEUgZzeoFdODwnePp3n6Oe3rz8ur6vt3dXN5cW2MoKLXFHJCOESBNEgJKW9bRxteyel7Eq2HTPauZY5yXtTepo7LpumgdqC7W3Hz9HHo-5OD2qOftTxXgXt1fXFVq09IhoqCeUHWtgPR7Z88vcCKavRp3UuPUFYkmJdXdim46Sg7IiaGFKK4J61KVGrN2qvVm_U6o0irMSq__5Jf-lHsM9P_plRgC9HAMpGDh6iSsaXXYL1EUxWNvj_6f8FB9qiew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957167930</pqid></control><display><type>article</type><title>Good Manufacturing Practice–compliant human induced pluripotent stem cells: from bench to putative clinical products</title><source>Alma/SFX Local Collection</source><creator>Novoa, Juan J. ; Westra, Inge M. ; Steeneveld, Esther ; Fonseca Neves, Natascha ; Arendzen, Christiaan H. ; Rajaei, Bahareh ; Grundeken, Esmée ; Yildiz, Mehmet ; van der Valk, Wouter ; Salvador, Alison ; Carlotti, Françoise ; Dijkers, Pascale F. ; Locher, Heiko ; van den Berg, Cathelijne W. ; Raymond, Karine I. ; Kirkeby, Agnete ; Mummery, Christine L. ; Rabelink, Ton J. ; Freund, Christian ; Meij, Pauline ; Wieles, Brigitte</creator><creatorcontrib>Novoa, Juan J. ; Westra, Inge M. ; Steeneveld, Esther ; Fonseca Neves, Natascha ; Arendzen, Christiaan H. ; Rajaei, Bahareh ; Grundeken, Esmée ; Yildiz, Mehmet ; van der Valk, Wouter ; Salvador, Alison ; Carlotti, Françoise ; Dijkers, Pascale F. ; Locher, Heiko ; van den Berg, Cathelijne W. ; Raymond, Karine I. ; Kirkeby, Agnete ; Mummery, Christine L. ; Rabelink, Ton J. ; Freund, Christian ; Meij, Pauline ; Wieles, Brigitte</creatorcontrib><description>Few human induced pluripotent stem cell (hiPSC) lines are Good Manufacturing Practice (GMP)-compliant, limiting the clinical use of hiPSC-derived products. Here, we addressed this by establishing and validating an in-house platform to produce GMP-compliant hiPSCs that would be appropriate for producing both allogeneic and autologous hiPSC-derived products. Our standard research protocol for hiPSCs production was adapted and translated into a GMP-compliant platform. In addition to the generation of GMP-compliant hiPSC, the platform entails the methodology for donor recruitment, consent and screening, donor material procurement, hiPSCs manufacture, in-process control, specific QC test validation, QC testing, product release, hiPSCs storage and stability testing. For platform validation, one test run and three production runs were performed. Highest-quality lines were selected to establish master cell banks (MCBs). Two MCBs were successfully released under GMP conditions. They demonstrated safety (sterility, negative mycoplasma, endotoxins &lt;5.0 EU/mL and negative adventitious agents), cell identity (&gt;75% of cells expressing markers of undifferentiated state, identical STR profile, normal karyotype in &gt;20 metaphases), purity (negative residual vectors and no plasmid integration in the genome) and potency (expression of at least two of the three markers for each of the three germ layers). In addition, directed differentiation to somitoids (skeletal muscle precursors) and six potential clinical products from all three germ layers was achieved: pancreatic islets (endoderm), kidney organoids and cardiomyocytes (mesoderm), and keratinocytes, GABAergic interneurons and inner-ear organoids (ectoderm). We successfully developed and validated a platform for generating GMP-compliant hiPSC lines. The two MCBs released were shown to differentiate into clinical products relevant for our own and other regenerative medicine interests. [Display omitted]</description><identifier>ISSN: 1465-3249</identifier><identifier>EISSN: 1477-2566</identifier><identifier>DOI: 10.1016/j.jcyt.2024.02.021</identifier><identifier>PMID: 38483359</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>cell therapy ; GMP production ; hiPSC-derived products ; human induced pluripotent stem cells ; Life Sciences ; quality control testing</subject><ispartof>Cytotherapy (Oxford, England), 2024-06, Vol.26 (6), p.556-566</ispartof><rights>2024 International Society for Cell &amp; Gene Therapy</rights><rights>Copyright © 2024 International Society for Cell &amp; Gene Therapy. Published by Elsevier Inc. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-1620036e40ae4611bd7f18bf6669666892caff82f63bc669a3f36777e5dedbd93</citedby><cites>FETCH-LOGICAL-c434t-1620036e40ae4611bd7f18bf6669666892caff82f63bc669a3f36777e5dedbd93</cites><orcidid>0000-0002-0262-5288 ; 0000-0001-9631-3404 ; 0000-0002-3260-1594 ; 0009-0008-5506-6660 ; 0000-0002-6700-2022 ; 0000-0002-4549-6535 ; 0000-0001-8756-6039 ; 0000-0003-3370-9932 ; 0000-0002-4419-3428 ; 0000-0001-6780-5186 ; 0000-0001-5661-7796 ; 0000-0002-4174-0270 ; 0000-0001-8203-6901 ; 0000-0001-7929-8468 ; 0009-0004-7111-2939 ; 0009-0004-2374-2100 ; 0000-0001-5892-8117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38483359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04716013$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Novoa, Juan J.</creatorcontrib><creatorcontrib>Westra, Inge M.</creatorcontrib><creatorcontrib>Steeneveld, Esther</creatorcontrib><creatorcontrib>Fonseca Neves, Natascha</creatorcontrib><creatorcontrib>Arendzen, Christiaan H.</creatorcontrib><creatorcontrib>Rajaei, Bahareh</creatorcontrib><creatorcontrib>Grundeken, Esmée</creatorcontrib><creatorcontrib>Yildiz, Mehmet</creatorcontrib><creatorcontrib>van der Valk, Wouter</creatorcontrib><creatorcontrib>Salvador, Alison</creatorcontrib><creatorcontrib>Carlotti, Françoise</creatorcontrib><creatorcontrib>Dijkers, Pascale F.</creatorcontrib><creatorcontrib>Locher, Heiko</creatorcontrib><creatorcontrib>van den Berg, Cathelijne W.</creatorcontrib><creatorcontrib>Raymond, Karine I.</creatorcontrib><creatorcontrib>Kirkeby, Agnete</creatorcontrib><creatorcontrib>Mummery, Christine L.</creatorcontrib><creatorcontrib>Rabelink, Ton J.</creatorcontrib><creatorcontrib>Freund, Christian</creatorcontrib><creatorcontrib>Meij, Pauline</creatorcontrib><creatorcontrib>Wieles, Brigitte</creatorcontrib><title>Good Manufacturing Practice–compliant human induced pluripotent stem cells: from bench to putative clinical products</title><title>Cytotherapy (Oxford, England)</title><addtitle>Cytotherapy</addtitle><description>Few human induced pluripotent stem cell (hiPSC) lines are Good Manufacturing Practice (GMP)-compliant, limiting the clinical use of hiPSC-derived products. Here, we addressed this by establishing and validating an in-house platform to produce GMP-compliant hiPSCs that would be appropriate for producing both allogeneic and autologous hiPSC-derived products. Our standard research protocol for hiPSCs production was adapted and translated into a GMP-compliant platform. In addition to the generation of GMP-compliant hiPSC, the platform entails the methodology for donor recruitment, consent and screening, donor material procurement, hiPSCs manufacture, in-process control, specific QC test validation, QC testing, product release, hiPSCs storage and stability testing. For platform validation, one test run and three production runs were performed. Highest-quality lines were selected to establish master cell banks (MCBs). Two MCBs were successfully released under GMP conditions. They demonstrated safety (sterility, negative mycoplasma, endotoxins &lt;5.0 EU/mL and negative adventitious agents), cell identity (&gt;75% of cells expressing markers of undifferentiated state, identical STR profile, normal karyotype in &gt;20 metaphases), purity (negative residual vectors and no plasmid integration in the genome) and potency (expression of at least two of the three markers for each of the three germ layers). In addition, directed differentiation to somitoids (skeletal muscle precursors) and six potential clinical products from all three germ layers was achieved: pancreatic islets (endoderm), kidney organoids and cardiomyocytes (mesoderm), and keratinocytes, GABAergic interneurons and inner-ear organoids (ectoderm). We successfully developed and validated a platform for generating GMP-compliant hiPSC lines. The two MCBs released were shown to differentiate into clinical products relevant for our own and other regenerative medicine interests. [Display omitted]</description><subject>cell therapy</subject><subject>GMP production</subject><subject>hiPSC-derived products</subject><subject>human induced pluripotent stem cells</subject><subject>Life Sciences</subject><subject>quality control testing</subject><issn>1465-3249</issn><issn>1477-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAQxy0Eoh_wAhyQj3DI4q84CeJSVdBW2qoc4Gw59pj1KomD7azUG-_QN-yT4GhLj0gz8mj881-e-SP0jpINJVR-2m_25j5vGGFiQ1gJ-gKdUtE0FaulfLnWsq44E90JOktpTwgjbVu_Rie8FS3ndXeKDlchWHyrp8Vpk5fop1_4eyylN_D458GEcR68njLeLaOesJ_sYsDieSjoHDKUm5RhxAaGIX3GLoYR9zCZHc4Bz0vW2R8Am8FP3ugBzzEUgZzeoFdODwnePp3n6Oe3rz8ur6vt3dXN5cW2MoKLXFHJCOESBNEgJKW9bRxteyel7Eq2HTPauZY5yXtTepo7LpumgdqC7W3Hz9HHo-5OD2qOftTxXgXt1fXFVq09IhoqCeUHWtgPR7Z88vcCKavRp3UuPUFYkmJdXdim46Sg7IiaGFKK4J61KVGrN2qvVm_U6o0irMSq__5Jf-lHsM9P_plRgC9HAMpGDh6iSsaXXYL1EUxWNvj_6f8FB9qiew</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Novoa, Juan J.</creator><creator>Westra, Inge M.</creator><creator>Steeneveld, Esther</creator><creator>Fonseca Neves, Natascha</creator><creator>Arendzen, Christiaan H.</creator><creator>Rajaei, Bahareh</creator><creator>Grundeken, Esmée</creator><creator>Yildiz, Mehmet</creator><creator>van der Valk, Wouter</creator><creator>Salvador, Alison</creator><creator>Carlotti, Françoise</creator><creator>Dijkers, Pascale F.</creator><creator>Locher, Heiko</creator><creator>van den Berg, Cathelijne W.</creator><creator>Raymond, Karine I.</creator><creator>Kirkeby, Agnete</creator><creator>Mummery, Christine L.</creator><creator>Rabelink, Ton J.</creator><creator>Freund, Christian</creator><creator>Meij, Pauline</creator><creator>Wieles, Brigitte</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0262-5288</orcidid><orcidid>https://orcid.org/0000-0001-9631-3404</orcidid><orcidid>https://orcid.org/0000-0002-3260-1594</orcidid><orcidid>https://orcid.org/0009-0008-5506-6660</orcidid><orcidid>https://orcid.org/0000-0002-6700-2022</orcidid><orcidid>https://orcid.org/0000-0002-4549-6535</orcidid><orcidid>https://orcid.org/0000-0001-8756-6039</orcidid><orcidid>https://orcid.org/0000-0003-3370-9932</orcidid><orcidid>https://orcid.org/0000-0002-4419-3428</orcidid><orcidid>https://orcid.org/0000-0001-6780-5186</orcidid><orcidid>https://orcid.org/0000-0001-5661-7796</orcidid><orcidid>https://orcid.org/0000-0002-4174-0270</orcidid><orcidid>https://orcid.org/0000-0001-8203-6901</orcidid><orcidid>https://orcid.org/0000-0001-7929-8468</orcidid><orcidid>https://orcid.org/0009-0004-7111-2939</orcidid><orcidid>https://orcid.org/0009-0004-2374-2100</orcidid><orcidid>https://orcid.org/0000-0001-5892-8117</orcidid></search><sort><creationdate>20240601</creationdate><title>Good Manufacturing Practice–compliant human induced pluripotent stem cells: from bench to putative clinical products</title><author>Novoa, Juan J. ; Westra, Inge M. ; Steeneveld, Esther ; Fonseca Neves, Natascha ; Arendzen, Christiaan H. ; Rajaei, Bahareh ; Grundeken, Esmée ; Yildiz, Mehmet ; van der Valk, Wouter ; Salvador, Alison ; Carlotti, Françoise ; Dijkers, Pascale F. ; Locher, Heiko ; van den Berg, Cathelijne W. ; Raymond, Karine I. ; Kirkeby, Agnete ; Mummery, Christine L. ; Rabelink, Ton J. ; Freund, Christian ; Meij, Pauline ; Wieles, Brigitte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-1620036e40ae4611bd7f18bf6669666892caff82f63bc669a3f36777e5dedbd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>cell therapy</topic><topic>GMP production</topic><topic>hiPSC-derived products</topic><topic>human induced pluripotent stem cells</topic><topic>Life Sciences</topic><topic>quality control testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Novoa, Juan J.</creatorcontrib><creatorcontrib>Westra, Inge M.</creatorcontrib><creatorcontrib>Steeneveld, Esther</creatorcontrib><creatorcontrib>Fonseca Neves, Natascha</creatorcontrib><creatorcontrib>Arendzen, Christiaan H.</creatorcontrib><creatorcontrib>Rajaei, Bahareh</creatorcontrib><creatorcontrib>Grundeken, Esmée</creatorcontrib><creatorcontrib>Yildiz, Mehmet</creatorcontrib><creatorcontrib>van der Valk, Wouter</creatorcontrib><creatorcontrib>Salvador, Alison</creatorcontrib><creatorcontrib>Carlotti, Françoise</creatorcontrib><creatorcontrib>Dijkers, Pascale F.</creatorcontrib><creatorcontrib>Locher, Heiko</creatorcontrib><creatorcontrib>van den Berg, Cathelijne W.</creatorcontrib><creatorcontrib>Raymond, Karine I.</creatorcontrib><creatorcontrib>Kirkeby, Agnete</creatorcontrib><creatorcontrib>Mummery, Christine L.</creatorcontrib><creatorcontrib>Rabelink, Ton J.</creatorcontrib><creatorcontrib>Freund, Christian</creatorcontrib><creatorcontrib>Meij, Pauline</creatorcontrib><creatorcontrib>Wieles, Brigitte</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Cytotherapy (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Novoa, Juan J.</au><au>Westra, Inge M.</au><au>Steeneveld, Esther</au><au>Fonseca Neves, Natascha</au><au>Arendzen, Christiaan H.</au><au>Rajaei, Bahareh</au><au>Grundeken, Esmée</au><au>Yildiz, Mehmet</au><au>van der Valk, Wouter</au><au>Salvador, Alison</au><au>Carlotti, Françoise</au><au>Dijkers, Pascale F.</au><au>Locher, Heiko</au><au>van den Berg, Cathelijne W.</au><au>Raymond, Karine I.</au><au>Kirkeby, Agnete</au><au>Mummery, Christine L.</au><au>Rabelink, Ton J.</au><au>Freund, Christian</au><au>Meij, Pauline</au><au>Wieles, Brigitte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Good Manufacturing Practice–compliant human induced pluripotent stem cells: from bench to putative clinical products</atitle><jtitle>Cytotherapy (Oxford, England)</jtitle><addtitle>Cytotherapy</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>26</volume><issue>6</issue><spage>556</spage><epage>566</epage><pages>556-566</pages><issn>1465-3249</issn><eissn>1477-2566</eissn><abstract>Few human induced pluripotent stem cell (hiPSC) lines are Good Manufacturing Practice (GMP)-compliant, limiting the clinical use of hiPSC-derived products. Here, we addressed this by establishing and validating an in-house platform to produce GMP-compliant hiPSCs that would be appropriate for producing both allogeneic and autologous hiPSC-derived products. Our standard research protocol for hiPSCs production was adapted and translated into a GMP-compliant platform. In addition to the generation of GMP-compliant hiPSC, the platform entails the methodology for donor recruitment, consent and screening, donor material procurement, hiPSCs manufacture, in-process control, specific QC test validation, QC testing, product release, hiPSCs storage and stability testing. For platform validation, one test run and three production runs were performed. Highest-quality lines were selected to establish master cell banks (MCBs). Two MCBs were successfully released under GMP conditions. They demonstrated safety (sterility, negative mycoplasma, endotoxins &lt;5.0 EU/mL and negative adventitious agents), cell identity (&gt;75% of cells expressing markers of undifferentiated state, identical STR profile, normal karyotype in &gt;20 metaphases), purity (negative residual vectors and no plasmid integration in the genome) and potency (expression of at least two of the three markers for each of the three germ layers). In addition, directed differentiation to somitoids (skeletal muscle precursors) and six potential clinical products from all three germ layers was achieved: pancreatic islets (endoderm), kidney organoids and cardiomyocytes (mesoderm), and keratinocytes, GABAergic interneurons and inner-ear organoids (ectoderm). We successfully developed and validated a platform for generating GMP-compliant hiPSC lines. The two MCBs released were shown to differentiate into clinical products relevant for our own and other regenerative medicine interests. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>38483359</pmid><doi>10.1016/j.jcyt.2024.02.021</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0262-5288</orcidid><orcidid>https://orcid.org/0000-0001-9631-3404</orcidid><orcidid>https://orcid.org/0000-0002-3260-1594</orcidid><orcidid>https://orcid.org/0009-0008-5506-6660</orcidid><orcidid>https://orcid.org/0000-0002-6700-2022</orcidid><orcidid>https://orcid.org/0000-0002-4549-6535</orcidid><orcidid>https://orcid.org/0000-0001-8756-6039</orcidid><orcidid>https://orcid.org/0000-0003-3370-9932</orcidid><orcidid>https://orcid.org/0000-0002-4419-3428</orcidid><orcidid>https://orcid.org/0000-0001-6780-5186</orcidid><orcidid>https://orcid.org/0000-0001-5661-7796</orcidid><orcidid>https://orcid.org/0000-0002-4174-0270</orcidid><orcidid>https://orcid.org/0000-0001-8203-6901</orcidid><orcidid>https://orcid.org/0000-0001-7929-8468</orcidid><orcidid>https://orcid.org/0009-0004-7111-2939</orcidid><orcidid>https://orcid.org/0009-0004-2374-2100</orcidid><orcidid>https://orcid.org/0000-0001-5892-8117</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1465-3249
ispartof Cytotherapy (Oxford, England), 2024-06, Vol.26 (6), p.556-566
issn 1465-3249
1477-2566
language eng
recordid cdi_hal_primary_oai_HAL_hal_04716013v1
source Alma/SFX Local Collection
subjects cell therapy
GMP production
hiPSC-derived products
human induced pluripotent stem cells
Life Sciences
quality control testing
title Good Manufacturing Practice–compliant human induced pluripotent stem cells: from bench to putative clinical products
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Good%20Manufacturing%20Practice%E2%80%93compliant%20human%20induced%20pluripotent%20stem%20cells:%20from%20bench%20to%20putative%20clinical%20products&rft.jtitle=Cytotherapy%20(Oxford,%20England)&rft.au=Novoa,%20Juan%20J.&rft.date=2024-06-01&rft.volume=26&rft.issue=6&rft.spage=556&rft.epage=566&rft.pages=556-566&rft.issn=1465-3249&rft.eissn=1477-2566&rft_id=info:doi/10.1016/j.jcyt.2024.02.021&rft_dat=%3Cproquest_hal_p%3E2957167930%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957167930&rft_id=info:pmid/38483359&rft_els_id=S1465324924000707&rfr_iscdi=true