Ratio of forces during sprint acceleration: A comparison of different calculation methods

The orientation of the ground reaction force (GRF) vector is a key determinant of human sprint acceleration performance and has been described using ratio of forces (RF) which quantifies the ratio of the antero-posterior component to the resultant GRF. Different methods have previously been used to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2021-10, Vol.127, p.110685-110685, Article 110685
Hauptverfasser: Bezodis, Neil, Colyer, Steffi, Nagahara, Ryu, Bayne, Helen, Bezodis, Ian, Morin, Jean-Benoît, Murata, Munenori, Samozino, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110685
container_issue
container_start_page 110685
container_title Journal of biomechanics
container_volume 127
creator Bezodis, Neil
Colyer, Steffi
Nagahara, Ryu
Bayne, Helen
Bezodis, Ian
Morin, Jean-Benoît
Murata, Munenori
Samozino, Pierre
description The orientation of the ground reaction force (GRF) vector is a key determinant of human sprint acceleration performance and has been described using ratio of forces (RF) which quantifies the ratio of the antero-posterior component to the resultant GRF. Different methods have previously been used to calculate step-averaged RF, and this study therefore aimed to compare the effects of three calculation methods on two key “technical” ability measures: decline in ratio of forces (DRF) and theoretical maximal RF at null velocity (RF0). Twenty-four male sprinters completed maximal effort 60 m sprints from block and standing starts on a fully instrumented track (force platforms in series). RF-horizontal velocity profiles were determined from the measured GRFs over the entire acceleration phase using three different calculation methods for obtaining an RF value for each step: A) the mean of instantaneous RF during stance, B) the step-averaged antero-posterior component divided by the step-averaged resultant GRF, C) the step-averaged antero-posterior component divided by the resultant of the step-averaged antero-posterior and vertical components. Method A led to significantly greater RF0 and shallower DRF slopes than Methods B and C. These differences were very large (Effect size Cohen’s d = 2.06 – 4.04) and varied between individuals due to differences in the GRF profiles, particularly during late stance as the acceleration phase progressed. Method B provides RF values which most closely approximate the mechanical reality of step averaged accelerations progressively approaching zero and it is recommended for future analyses although it should be considered a ratio of impulses.
doi_str_mv 10.1016/j.jbiomech.2021.110685
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04715512v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929021004541</els_id><sourcerecordid>2578150628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-1410c491f568f2651659cf5a3b78812d04c919bbbafe6df6ad3a185d86b4cc8d3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS1EJZbCX0CRuMAhi8eJHYcTqwpopZWQqnLgZDljm3WUxIudVOq_r0MoBy6cRpr53mjePELeAN0DBfGh3_edD6PF055RBnsAKiR_RnYgm6pklaTPyY7mSdmylr4gL1PqKaVN3bQ78uNWzz4UwRUuRLSpMEv0088inXOZC41oBxtXZvpYHAoM41lHn8K0Sox3zkabOdQDLsNvrBjtfAomvSIXTg_Jvv5TL8n3L5_vrq7L47evN1eHY4mcwVxCDRTrFhwX0jHBQfAWHddV10gJzNAaW2i7rtPOCuOENpUGyY0UXY0oTXVJ3m97T3pQ-epRxwcVtFfXh6Nae7RugHNg95DZdxt7juHXYtOsRp-yw0FPNixJMS4ErTiXNKNv_0H7sMQpO8lUI4FTwWSmxEZhDClF6_5eAFSt6ahePaWj1nTUlk4WftqENr_m3tuoEno7oTU-WpyVCf5_Kx4BhhuayA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578150628</pqid></control><display><type>article</type><title>Ratio of forces during sprint acceleration: A comparison of different calculation methods</title><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Bezodis, Neil ; Colyer, Steffi ; Nagahara, Ryu ; Bayne, Helen ; Bezodis, Ian ; Morin, Jean-Benoît ; Murata, Munenori ; Samozino, Pierre</creator><creatorcontrib>Bezodis, Neil ; Colyer, Steffi ; Nagahara, Ryu ; Bayne, Helen ; Bezodis, Ian ; Morin, Jean-Benoît ; Murata, Munenori ; Samozino, Pierre</creatorcontrib><description>The orientation of the ground reaction force (GRF) vector is a key determinant of human sprint acceleration performance and has been described using ratio of forces (RF) which quantifies the ratio of the antero-posterior component to the resultant GRF. Different methods have previously been used to calculate step-averaged RF, and this study therefore aimed to compare the effects of three calculation methods on two key “technical” ability measures: decline in ratio of forces (DRF) and theoretical maximal RF at null velocity (RF0). Twenty-four male sprinters completed maximal effort 60 m sprints from block and standing starts on a fully instrumented track (force platforms in series). RF-horizontal velocity profiles were determined from the measured GRFs over the entire acceleration phase using three different calculation methods for obtaining an RF value for each step: A) the mean of instantaneous RF during stance, B) the step-averaged antero-posterior component divided by the step-averaged resultant GRF, C) the step-averaged antero-posterior component divided by the resultant of the step-averaged antero-posterior and vertical components. Method A led to significantly greater RF0 and shallower DRF slopes than Methods B and C. These differences were very large (Effect size Cohen’s d = 2.06 – 4.04) and varied between individuals due to differences in the GRF profiles, particularly during late stance as the acceleration phase progressed. Method B provides RF values which most closely approximate the mechanical reality of step averaged accelerations progressively approaching zero and it is recommended for future analyses although it should be considered a ratio of impulses.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2021.110685</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acceleration ; Force plates ; Ground reaction force ; Human performance ; Impulse ; Life Sciences ; Mathematical analysis ; Methods ; Sprinting ; Technique ; Velocity ; Velocity distribution</subject><ispartof>Journal of biomechanics, 2021-10, Vol.127, p.110685-110685, Article 110685</ispartof><rights>2021 Elsevier Ltd</rights><rights>2021. Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-1410c491f568f2651659cf5a3b78812d04c919bbbafe6df6ad3a185d86b4cc8d3</citedby><cites>FETCH-LOGICAL-c521t-1410c491f568f2651659cf5a3b78812d04c919bbbafe6df6ad3a185d86b4cc8d3</cites><orcidid>0000-0002-2520-4937 ; 0000-0002-1665-870X ; 0000-0002-4973-6591 ; 0000-0003-2229-3310 ; 0000-0003-3808-6762 ; 0000-0002-0250-032X ; 0000-0001-9101-9759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2578150628?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994,64384,64386,64388,72240</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04715512$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bezodis, Neil</creatorcontrib><creatorcontrib>Colyer, Steffi</creatorcontrib><creatorcontrib>Nagahara, Ryu</creatorcontrib><creatorcontrib>Bayne, Helen</creatorcontrib><creatorcontrib>Bezodis, Ian</creatorcontrib><creatorcontrib>Morin, Jean-Benoît</creatorcontrib><creatorcontrib>Murata, Munenori</creatorcontrib><creatorcontrib>Samozino, Pierre</creatorcontrib><title>Ratio of forces during sprint acceleration: A comparison of different calculation methods</title><title>Journal of biomechanics</title><description>The orientation of the ground reaction force (GRF) vector is a key determinant of human sprint acceleration performance and has been described using ratio of forces (RF) which quantifies the ratio of the antero-posterior component to the resultant GRF. Different methods have previously been used to calculate step-averaged RF, and this study therefore aimed to compare the effects of three calculation methods on two key “technical” ability measures: decline in ratio of forces (DRF) and theoretical maximal RF at null velocity (RF0). Twenty-four male sprinters completed maximal effort 60 m sprints from block and standing starts on a fully instrumented track (force platforms in series). RF-horizontal velocity profiles were determined from the measured GRFs over the entire acceleration phase using three different calculation methods for obtaining an RF value for each step: A) the mean of instantaneous RF during stance, B) the step-averaged antero-posterior component divided by the step-averaged resultant GRF, C) the step-averaged antero-posterior component divided by the resultant of the step-averaged antero-posterior and vertical components. Method A led to significantly greater RF0 and shallower DRF slopes than Methods B and C. These differences were very large (Effect size Cohen’s d = 2.06 – 4.04) and varied between individuals due to differences in the GRF profiles, particularly during late stance as the acceleration phase progressed. Method B provides RF values which most closely approximate the mechanical reality of step averaged accelerations progressively approaching zero and it is recommended for future analyses although it should be considered a ratio of impulses.</description><subject>Acceleration</subject><subject>Force plates</subject><subject>Ground reaction force</subject><subject>Human performance</subject><subject>Impulse</subject><subject>Life Sciences</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Sprinting</subject><subject>Technique</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUFv1DAQhS1EJZbCX0CRuMAhi8eJHYcTqwpopZWQqnLgZDljm3WUxIudVOq_r0MoBy6cRpr53mjePELeAN0DBfGh3_edD6PF055RBnsAKiR_RnYgm6pklaTPyY7mSdmylr4gL1PqKaVN3bQ78uNWzz4UwRUuRLSpMEv0088inXOZC41oBxtXZvpYHAoM41lHn8K0Sox3zkabOdQDLsNvrBjtfAomvSIXTg_Jvv5TL8n3L5_vrq7L47evN1eHY4mcwVxCDRTrFhwX0jHBQfAWHddV10gJzNAaW2i7rtPOCuOENpUGyY0UXY0oTXVJ3m97T3pQ-epRxwcVtFfXh6Nae7RugHNg95DZdxt7juHXYtOsRp-yw0FPNixJMS4ErTiXNKNv_0H7sMQpO8lUI4FTwWSmxEZhDClF6_5eAFSt6ahePaWj1nTUlk4WftqENr_m3tuoEno7oTU-WpyVCf5_Kx4BhhuayA</recordid><startdate>20211011</startdate><enddate>20211011</enddate><creator>Bezodis, Neil</creator><creator>Colyer, Steffi</creator><creator>Nagahara, Ryu</creator><creator>Bayne, Helen</creator><creator>Bezodis, Ian</creator><creator>Morin, Jean-Benoît</creator><creator>Murata, Munenori</creator><creator>Samozino, Pierre</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2520-4937</orcidid><orcidid>https://orcid.org/0000-0002-1665-870X</orcidid><orcidid>https://orcid.org/0000-0002-4973-6591</orcidid><orcidid>https://orcid.org/0000-0003-2229-3310</orcidid><orcidid>https://orcid.org/0000-0003-3808-6762</orcidid><orcidid>https://orcid.org/0000-0002-0250-032X</orcidid><orcidid>https://orcid.org/0000-0001-9101-9759</orcidid></search><sort><creationdate>20211011</creationdate><title>Ratio of forces during sprint acceleration: A comparison of different calculation methods</title><author>Bezodis, Neil ; Colyer, Steffi ; Nagahara, Ryu ; Bayne, Helen ; Bezodis, Ian ; Morin, Jean-Benoît ; Murata, Munenori ; Samozino, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-1410c491f568f2651659cf5a3b78812d04c919bbbafe6df6ad3a185d86b4cc8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceleration</topic><topic>Force plates</topic><topic>Ground reaction force</topic><topic>Human performance</topic><topic>Impulse</topic><topic>Life Sciences</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Sprinting</topic><topic>Technique</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bezodis, Neil</creatorcontrib><creatorcontrib>Colyer, Steffi</creatorcontrib><creatorcontrib>Nagahara, Ryu</creatorcontrib><creatorcontrib>Bayne, Helen</creatorcontrib><creatorcontrib>Bezodis, Ian</creatorcontrib><creatorcontrib>Morin, Jean-Benoît</creatorcontrib><creatorcontrib>Murata, Munenori</creatorcontrib><creatorcontrib>Samozino, Pierre</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bezodis, Neil</au><au>Colyer, Steffi</au><au>Nagahara, Ryu</au><au>Bayne, Helen</au><au>Bezodis, Ian</au><au>Morin, Jean-Benoît</au><au>Murata, Munenori</au><au>Samozino, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ratio of forces during sprint acceleration: A comparison of different calculation methods</atitle><jtitle>Journal of biomechanics</jtitle><date>2021-10-11</date><risdate>2021</risdate><volume>127</volume><spage>110685</spage><epage>110685</epage><pages>110685-110685</pages><artnum>110685</artnum><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>The orientation of the ground reaction force (GRF) vector is a key determinant of human sprint acceleration performance and has been described using ratio of forces (RF) which quantifies the ratio of the antero-posterior component to the resultant GRF. Different methods have previously been used to calculate step-averaged RF, and this study therefore aimed to compare the effects of three calculation methods on two key “technical” ability measures: decline in ratio of forces (DRF) and theoretical maximal RF at null velocity (RF0). Twenty-four male sprinters completed maximal effort 60 m sprints from block and standing starts on a fully instrumented track (force platforms in series). RF-horizontal velocity profiles were determined from the measured GRFs over the entire acceleration phase using three different calculation methods for obtaining an RF value for each step: A) the mean of instantaneous RF during stance, B) the step-averaged antero-posterior component divided by the step-averaged resultant GRF, C) the step-averaged antero-posterior component divided by the resultant of the step-averaged antero-posterior and vertical components. Method A led to significantly greater RF0 and shallower DRF slopes than Methods B and C. These differences were very large (Effect size Cohen’s d = 2.06 – 4.04) and varied between individuals due to differences in the GRF profiles, particularly during late stance as the acceleration phase progressed. Method B provides RF values which most closely approximate the mechanical reality of step averaged accelerations progressively approaching zero and it is recommended for future analyses although it should be considered a ratio of impulses.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jbiomech.2021.110685</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2520-4937</orcidid><orcidid>https://orcid.org/0000-0002-1665-870X</orcidid><orcidid>https://orcid.org/0000-0002-4973-6591</orcidid><orcidid>https://orcid.org/0000-0003-2229-3310</orcidid><orcidid>https://orcid.org/0000-0003-3808-6762</orcidid><orcidid>https://orcid.org/0000-0002-0250-032X</orcidid><orcidid>https://orcid.org/0000-0001-9101-9759</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2021-10, Vol.127, p.110685-110685, Article 110685
issn 0021-9290
1873-2380
language eng
recordid cdi_hal_primary_oai_HAL_hal_04715512v1
source ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland
subjects Acceleration
Force plates
Ground reaction force
Human performance
Impulse
Life Sciences
Mathematical analysis
Methods
Sprinting
Technique
Velocity
Velocity distribution
title Ratio of forces during sprint acceleration: A comparison of different calculation methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ratio%20of%20forces%20during%20sprint%20acceleration:%20A%20comparison%20of%20different%20calculation%20methods&rft.jtitle=Journal%20of%20biomechanics&rft.au=Bezodis,%20Neil&rft.date=2021-10-11&rft.volume=127&rft.spage=110685&rft.epage=110685&rft.pages=110685-110685&rft.artnum=110685&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2021.110685&rft_dat=%3Cproquest_hal_p%3E2578150628%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578150628&rft_id=info:pmid/&rft_els_id=S0021929021004541&rfr_iscdi=true