Guard Cells Integrate Light and Temperature Signals to Control Stomatal Aperture

High temperature promotes guard cell expansion, which opens stomatal pores to facilitate leaf cooling. How the high-temperature signal is perceived and transmitted to regulate stomatal aperture is, however, unknown. Here, we used a reverse-genetics approach to understand high temperature-mediated st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2020-03, Vol.182 (3), p.1404-1419
Hauptverfasser: Kostaki, Kalliopi-Ioanna, Coupel-Ledru, Aude, Bonnell, Verity C, Gustavsson, Mathilda, Sun, Peng, McLaughlin, Fiona J, Fraser, Donald P, McLachlan, Deirdre H, Hetherington, Alistair M, Dodd, Antony N, Franklin, Keara A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1419
container_issue 3
container_start_page 1404
container_title Plant physiology (Bethesda)
container_volume 182
creator Kostaki, Kalliopi-Ioanna
Coupel-Ledru, Aude
Bonnell, Verity C
Gustavsson, Mathilda
Sun, Peng
McLaughlin, Fiona J
Fraser, Donald P
McLachlan, Deirdre H
Hetherington, Alistair M
Dodd, Antony N
Franklin, Keara A
description High temperature promotes guard cell expansion, which opens stomatal pores to facilitate leaf cooling. How the high-temperature signal is perceived and transmitted to regulate stomatal aperture is, however, unknown. Here, we used a reverse-genetics approach to understand high temperature-mediated stomatal opening in Arabidopsis ( ). Our findings reveal that high temperature-induced guard cell movement requires components involved in blue light-mediated stomatal opening, suggesting cross talk between light and temperature signaling pathways. The molecular players involved include phototropin photoreceptors, plasma membrane H -ATPases, and multiple members of the 14-3-3 protein family. We further show that phototropin-deficient mutants display impaired rosette evapotranspiration and leaf cooling at high temperatures. Blocking the interaction of 14-3-3 proteins with their client proteins severely impairs high temperature-induced stomatal opening but has no effect on the induction of heat-sensitive guard cell transcripts, supporting the existence of an additional intracellular high-temperature response pathway in plants.
doi_str_mv 10.1104/pp.19.01528
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04703440v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2341633505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-1c6098753d31fe4ab68eb3826cf0f58f7fb9ed3caf789548988a39d3933fcf463</originalsourceid><addsrcrecordid>eNo90E1LAzEQBuAgiq3Vk3fJUZHWyU52mxzLom2hoNB6Dulu0q7sl9ms4L83tdrTDMPDC_MScstgwhjwp7adMDkBFkfijAxZjNE4irk4J0OAsIMQckCuuu4DABgyfkkGyCSXgDAkb_Neu5ympiw7uqy92TntDV0Vu72nus7pxlStCbfeGboudrUOzjc0bWrvmpKufVNpr0s6C-qArsmFDcbc_M0ReX953qSL8ep1vkxnq3HGo8SPWZaAFNMYc2TWcL1NhNmiiJLMgo2FndqtNDlm2k6FDN9IITTKHCWizSxPcEQejrl7XarWFZV236rRhVrMVupwAz4F5By-WLD3R9u65rM3nVdV0WXhZV2bpu9UhJwliDHEgT4eaeaarnPGnrIZqEPdqm0Vk-q37qDv_oL7bWXyk_3vF38Al6V5Xg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2341633505</pqid></control><display><type>article</type><title>Guard Cells Integrate Light and Temperature Signals to Control Stomatal Aperture</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kostaki, Kalliopi-Ioanna ; Coupel-Ledru, Aude ; Bonnell, Verity C ; Gustavsson, Mathilda ; Sun, Peng ; McLaughlin, Fiona J ; Fraser, Donald P ; McLachlan, Deirdre H ; Hetherington, Alistair M ; Dodd, Antony N ; Franklin, Keara A</creator><creatorcontrib>Kostaki, Kalliopi-Ioanna ; Coupel-Ledru, Aude ; Bonnell, Verity C ; Gustavsson, Mathilda ; Sun, Peng ; McLaughlin, Fiona J ; Fraser, Donald P ; McLachlan, Deirdre H ; Hetherington, Alistair M ; Dodd, Antony N ; Franklin, Keara A</creatorcontrib><description>High temperature promotes guard cell expansion, which opens stomatal pores to facilitate leaf cooling. How the high-temperature signal is perceived and transmitted to regulate stomatal aperture is, however, unknown. Here, we used a reverse-genetics approach to understand high temperature-mediated stomatal opening in Arabidopsis ( ). Our findings reveal that high temperature-induced guard cell movement requires components involved in blue light-mediated stomatal opening, suggesting cross talk between light and temperature signaling pathways. The molecular players involved include phototropin photoreceptors, plasma membrane H -ATPases, and multiple members of the 14-3-3 protein family. We further show that phototropin-deficient mutants display impaired rosette evapotranspiration and leaf cooling at high temperatures. Blocking the interaction of 14-3-3 proteins with their client proteins severely impairs high temperature-induced stomatal opening but has no effect on the induction of heat-sensitive guard cell transcripts, supporting the existence of an additional intracellular high-temperature response pathway in plants.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.19.01528</identifier><identifier>PMID: 31949030</identifier><language>eng</language><publisher>United States: Oxford University Press ; American Society of Plant Biologists</publisher><subject>14-3-3 Proteins - genetics ; 14-3-3 Proteins - metabolism ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Gene Expression Regulation, Plant - genetics ; Gene Expression Regulation, Plant - physiology ; Life Sciences ; Plant Stomata - genetics ; Plant Stomata - metabolism ; Proton-Translocating ATPases - genetics ; Proton-Translocating ATPases - metabolism ; Signal Transduction - genetics ; Signal Transduction - physiology ; Temperature</subject><ispartof>Plant physiology (Bethesda), 2020-03, Vol.182 (3), p.1404-1419</ispartof><rights>2020 American Society of Plant Biologists. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-1c6098753d31fe4ab68eb3826cf0f58f7fb9ed3caf789548988a39d3933fcf463</citedby><orcidid>0000-0003-2097-5924 ; 0000-0002-1859-640X ; 0000-0002-5951-6365 ; 0000-0001-6060-9203 ; 0000-0001-6859-0105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31949030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-04703440$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kostaki, Kalliopi-Ioanna</creatorcontrib><creatorcontrib>Coupel-Ledru, Aude</creatorcontrib><creatorcontrib>Bonnell, Verity C</creatorcontrib><creatorcontrib>Gustavsson, Mathilda</creatorcontrib><creatorcontrib>Sun, Peng</creatorcontrib><creatorcontrib>McLaughlin, Fiona J</creatorcontrib><creatorcontrib>Fraser, Donald P</creatorcontrib><creatorcontrib>McLachlan, Deirdre H</creatorcontrib><creatorcontrib>Hetherington, Alistair M</creatorcontrib><creatorcontrib>Dodd, Antony N</creatorcontrib><creatorcontrib>Franklin, Keara A</creatorcontrib><title>Guard Cells Integrate Light and Temperature Signals to Control Stomatal Aperture</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>High temperature promotes guard cell expansion, which opens stomatal pores to facilitate leaf cooling. How the high-temperature signal is perceived and transmitted to regulate stomatal aperture is, however, unknown. Here, we used a reverse-genetics approach to understand high temperature-mediated stomatal opening in Arabidopsis ( ). Our findings reveal that high temperature-induced guard cell movement requires components involved in blue light-mediated stomatal opening, suggesting cross talk between light and temperature signaling pathways. The molecular players involved include phototropin photoreceptors, plasma membrane H -ATPases, and multiple members of the 14-3-3 protein family. We further show that phototropin-deficient mutants display impaired rosette evapotranspiration and leaf cooling at high temperatures. Blocking the interaction of 14-3-3 proteins with their client proteins severely impairs high temperature-induced stomatal opening but has no effect on the induction of heat-sensitive guard cell transcripts, supporting the existence of an additional intracellular high-temperature response pathway in plants.</description><subject>14-3-3 Proteins - genetics</subject><subject>14-3-3 Proteins - metabolism</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Gene Expression Regulation, Plant - genetics</subject><subject>Gene Expression Regulation, Plant - physiology</subject><subject>Life Sciences</subject><subject>Plant Stomata - genetics</subject><subject>Plant Stomata - metabolism</subject><subject>Proton-Translocating ATPases - genetics</subject><subject>Proton-Translocating ATPases - metabolism</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><subject>Temperature</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo90E1LAzEQBuAgiq3Vk3fJUZHWyU52mxzLom2hoNB6Dulu0q7sl9ms4L83tdrTDMPDC_MScstgwhjwp7adMDkBFkfijAxZjNE4irk4J0OAsIMQckCuuu4DABgyfkkGyCSXgDAkb_Neu5ympiw7uqy92TntDV0Vu72nus7pxlStCbfeGboudrUOzjc0bWrvmpKufVNpr0s6C-qArsmFDcbc_M0ReX953qSL8ep1vkxnq3HGo8SPWZaAFNMYc2TWcL1NhNmiiJLMgo2FndqtNDlm2k6FDN9IITTKHCWizSxPcEQejrl7XarWFZV236rRhVrMVupwAz4F5By-WLD3R9u65rM3nVdV0WXhZV2bpu9UhJwliDHEgT4eaeaarnPGnrIZqEPdqm0Vk-q37qDv_oL7bWXyk_3vF38Al6V5Xg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Kostaki, Kalliopi-Ioanna</creator><creator>Coupel-Ledru, Aude</creator><creator>Bonnell, Verity C</creator><creator>Gustavsson, Mathilda</creator><creator>Sun, Peng</creator><creator>McLaughlin, Fiona J</creator><creator>Fraser, Donald P</creator><creator>McLachlan, Deirdre H</creator><creator>Hetherington, Alistair M</creator><creator>Dodd, Antony N</creator><creator>Franklin, Keara A</creator><general>Oxford University Press ; American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2097-5924</orcidid><orcidid>https://orcid.org/0000-0002-1859-640X</orcidid><orcidid>https://orcid.org/0000-0002-5951-6365</orcidid><orcidid>https://orcid.org/0000-0001-6060-9203</orcidid><orcidid>https://orcid.org/0000-0001-6859-0105</orcidid></search><sort><creationdate>20200301</creationdate><title>Guard Cells Integrate Light and Temperature Signals to Control Stomatal Aperture</title><author>Kostaki, Kalliopi-Ioanna ; Coupel-Ledru, Aude ; Bonnell, Verity C ; Gustavsson, Mathilda ; Sun, Peng ; McLaughlin, Fiona J ; Fraser, Donald P ; McLachlan, Deirdre H ; Hetherington, Alistair M ; Dodd, Antony N ; Franklin, Keara A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-1c6098753d31fe4ab68eb3826cf0f58f7fb9ed3caf789548988a39d3933fcf463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>14-3-3 Proteins - genetics</topic><topic>14-3-3 Proteins - metabolism</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Gene Expression Regulation, Plant - genetics</topic><topic>Gene Expression Regulation, Plant - physiology</topic><topic>Life Sciences</topic><topic>Plant Stomata - genetics</topic><topic>Plant Stomata - metabolism</topic><topic>Proton-Translocating ATPases - genetics</topic><topic>Proton-Translocating ATPases - metabolism</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kostaki, Kalliopi-Ioanna</creatorcontrib><creatorcontrib>Coupel-Ledru, Aude</creatorcontrib><creatorcontrib>Bonnell, Verity C</creatorcontrib><creatorcontrib>Gustavsson, Mathilda</creatorcontrib><creatorcontrib>Sun, Peng</creatorcontrib><creatorcontrib>McLaughlin, Fiona J</creatorcontrib><creatorcontrib>Fraser, Donald P</creatorcontrib><creatorcontrib>McLachlan, Deirdre H</creatorcontrib><creatorcontrib>Hetherington, Alistair M</creatorcontrib><creatorcontrib>Dodd, Antony N</creatorcontrib><creatorcontrib>Franklin, Keara A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kostaki, Kalliopi-Ioanna</au><au>Coupel-Ledru, Aude</au><au>Bonnell, Verity C</au><au>Gustavsson, Mathilda</au><au>Sun, Peng</au><au>McLaughlin, Fiona J</au><au>Fraser, Donald P</au><au>McLachlan, Deirdre H</au><au>Hetherington, Alistair M</au><au>Dodd, Antony N</au><au>Franklin, Keara A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guard Cells Integrate Light and Temperature Signals to Control Stomatal Aperture</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>182</volume><issue>3</issue><spage>1404</spage><epage>1419</epage><pages>1404-1419</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>High temperature promotes guard cell expansion, which opens stomatal pores to facilitate leaf cooling. How the high-temperature signal is perceived and transmitted to regulate stomatal aperture is, however, unknown. Here, we used a reverse-genetics approach to understand high temperature-mediated stomatal opening in Arabidopsis ( ). Our findings reveal that high temperature-induced guard cell movement requires components involved in blue light-mediated stomatal opening, suggesting cross talk between light and temperature signaling pathways. The molecular players involved include phototropin photoreceptors, plasma membrane H -ATPases, and multiple members of the 14-3-3 protein family. We further show that phototropin-deficient mutants display impaired rosette evapotranspiration and leaf cooling at high temperatures. Blocking the interaction of 14-3-3 proteins with their client proteins severely impairs high temperature-induced stomatal opening but has no effect on the induction of heat-sensitive guard cell transcripts, supporting the existence of an additional intracellular high-temperature response pathway in plants.</abstract><cop>United States</cop><pub>Oxford University Press ; American Society of Plant Biologists</pub><pmid>31949030</pmid><doi>10.1104/pp.19.01528</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2097-5924</orcidid><orcidid>https://orcid.org/0000-0002-1859-640X</orcidid><orcidid>https://orcid.org/0000-0002-5951-6365</orcidid><orcidid>https://orcid.org/0000-0001-6060-9203</orcidid><orcidid>https://orcid.org/0000-0001-6859-0105</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2020-03, Vol.182 (3), p.1404-1419
issn 0032-0889
1532-2548
language eng
recordid cdi_hal_primary_oai_HAL_hal_04703440v1
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects 14-3-3 Proteins - genetics
14-3-3 Proteins - metabolism
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Gene Expression Regulation, Plant - genetics
Gene Expression Regulation, Plant - physiology
Life Sciences
Plant Stomata - genetics
Plant Stomata - metabolism
Proton-Translocating ATPases - genetics
Proton-Translocating ATPases - metabolism
Signal Transduction - genetics
Signal Transduction - physiology
Temperature
title Guard Cells Integrate Light and Temperature Signals to Control Stomatal Aperture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A23%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guard%20Cells%20Integrate%20Light%20and%20Temperature%20Signals%20to%20Control%20Stomatal%20Aperture&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Kostaki,%20Kalliopi-Ioanna&rft.date=2020-03-01&rft.volume=182&rft.issue=3&rft.spage=1404&rft.epage=1419&rft.pages=1404-1419&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.19.01528&rft_dat=%3Cproquest_hal_p%3E2341633505%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2341633505&rft_id=info:pmid/31949030&rfr_iscdi=true