Semi-infinite Simple Exclusion Process: From Current Fluctuations to Target Survival

The symmetric simple exclusion process (SEP), where diffusive particles cannot overtake each other, is a paradigmatic model of transport in the single-file geometry. In this model, the study of currents has attracted a lot of attention, but so far most results are restricted to two geometries: (i) a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2024-09, Vol.133 (11), p.117102, Article 117102
Hauptverfasser: Grabsch, Aurélien, Moriya, Hiroki, Mallick, Kirone, Sasamoto, Tomohiro, Bénichou, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 117102
container_title Physical review letters
container_volume 133
creator Grabsch, Aurélien
Moriya, Hiroki
Mallick, Kirone
Sasamoto, Tomohiro
Bénichou, Olivier
description The symmetric simple exclusion process (SEP), where diffusive particles cannot overtake each other, is a paradigmatic model of transport in the single-file geometry. In this model, the study of currents has attracted a lot of attention, but so far most results are restricted to two geometries: (i) a finite system between two reservoirs, which does not conserve the number of particles but reaches a nonequilibrium steady state, and (ii) an infinite system which conserves the number of particles but never reaches a steady state. Here, we obtain an expression for the full cumulant generating function of the integrated current in the important intermediate situation of a semi-infinite system connected to a reservoir, which does not conserve the number of particles and never reaches a steady state. This results from the determination of the full spatial structure of the correlations, which we infer to obey the very same closed equation recently obtained in the infinite geometry and argue to be exact. Besides their intrinsic interest, these results allow us to solve two open problems: the survival probability of a fixed target in the SEP, and the statistics of the number of particles injected by a localized source.
doi_str_mv 10.1103/PhysRevLett.133.117102
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04693920v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110730266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-62c7548fa02c71188bfc66a6abf4f79dd20140cc709c38578491c38000b18f823</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMotn78BclRD6szmzXZeCulVaGg2HoOaZq1kf2oSbbovzdSLZ7mZXhmhnkIuUC4RgR287z-Ci92O7MxXiNjqSkQ8gMyRBAyE4jFIRkCMMwkgBiQkxDeAQBzXh6TAZOMoZQ4JIu5bVzm2sq1Llo6d82mtnTyaeo-uK6lz74zNoQ7OvVdQ8e997aNdFr3JvY6JiLQ2NGF9m820nnvt26r6zNyVOk62PPfekpep5PF-CGbPd0_jkezzOQCYsZzI26LstKQAmJZLivDueZ6WRWVkKtVDliAMQKkYeWtKAuJKaQ3llhWZc5OydVu71rXauNdo_2X6rRTD6OZ-ulBwSWTOWwxsZc7duO7j96GqBoXjK1r3dquD4olrYJBznlC-Q41vgvB22q_G0H92Ff_7KtkX-3sp8GL3xv9srGr_difbvYNACmCRg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110730266</pqid></control><display><type>article</type><title>Semi-infinite Simple Exclusion Process: From Current Fluctuations to Target Survival</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Grabsch, Aurélien ; Moriya, Hiroki ; Mallick, Kirone ; Sasamoto, Tomohiro ; Bénichou, Olivier</creator><creatorcontrib>Grabsch, Aurélien ; Moriya, Hiroki ; Mallick, Kirone ; Sasamoto, Tomohiro ; Bénichou, Olivier</creatorcontrib><description>The symmetric simple exclusion process (SEP), where diffusive particles cannot overtake each other, is a paradigmatic model of transport in the single-file geometry. In this model, the study of currents has attracted a lot of attention, but so far most results are restricted to two geometries: (i) a finite system between two reservoirs, which does not conserve the number of particles but reaches a nonequilibrium steady state, and (ii) an infinite system which conserves the number of particles but never reaches a steady state. Here, we obtain an expression for the full cumulant generating function of the integrated current in the important intermediate situation of a semi-infinite system connected to a reservoir, which does not conserve the number of particles and never reaches a steady state. This results from the determination of the full spatial structure of the correlations, which we infer to obey the very same closed equation recently obtained in the infinite geometry and argue to be exact. Besides their intrinsic interest, these results allow us to solve two open problems: the survival probability of a fixed target in the SEP, and the statistics of the number of particles injected by a localized source.</description><identifier>ISSN: 0031-9007</identifier><identifier>ISSN: 1079-7114</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.133.117102</identifier><identifier>PMID: 39331991</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Condensed Matter ; Physics ; Statistical Mechanics</subject><ispartof>Physical review letters, 2024-09, Vol.133 (11), p.117102, Article 117102</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-62c7548fa02c71188bfc66a6abf4f79dd20140cc709c38578491c38000b18f823</cites><orcidid>0000-0003-4316-5190 ; 0000-0003-1759-6093 ; 0000-0002-6749-2391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39331991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cnrs.hal.science/hal-04693920$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Grabsch, Aurélien</creatorcontrib><creatorcontrib>Moriya, Hiroki</creatorcontrib><creatorcontrib>Mallick, Kirone</creatorcontrib><creatorcontrib>Sasamoto, Tomohiro</creatorcontrib><creatorcontrib>Bénichou, Olivier</creatorcontrib><title>Semi-infinite Simple Exclusion Process: From Current Fluctuations to Target Survival</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The symmetric simple exclusion process (SEP), where diffusive particles cannot overtake each other, is a paradigmatic model of transport in the single-file geometry. In this model, the study of currents has attracted a lot of attention, but so far most results are restricted to two geometries: (i) a finite system between two reservoirs, which does not conserve the number of particles but reaches a nonequilibrium steady state, and (ii) an infinite system which conserves the number of particles but never reaches a steady state. Here, we obtain an expression for the full cumulant generating function of the integrated current in the important intermediate situation of a semi-infinite system connected to a reservoir, which does not conserve the number of particles and never reaches a steady state. This results from the determination of the full spatial structure of the correlations, which we infer to obey the very same closed equation recently obtained in the infinite geometry and argue to be exact. Besides their intrinsic interest, these results allow us to solve two open problems: the survival probability of a fixed target in the SEP, and the statistics of the number of particles injected by a localized source.</description><subject>Condensed Matter</subject><subject>Physics</subject><subject>Statistical Mechanics</subject><issn>0031-9007</issn><issn>1079-7114</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMotn78BclRD6szmzXZeCulVaGg2HoOaZq1kf2oSbbovzdSLZ7mZXhmhnkIuUC4RgR287z-Ci92O7MxXiNjqSkQ8gMyRBAyE4jFIRkCMMwkgBiQkxDeAQBzXh6TAZOMoZQ4JIu5bVzm2sq1Llo6d82mtnTyaeo-uK6lz74zNoQ7OvVdQ8e997aNdFr3JvY6JiLQ2NGF9m820nnvt26r6zNyVOk62PPfekpep5PF-CGbPd0_jkezzOQCYsZzI26LstKQAmJZLivDueZ6WRWVkKtVDliAMQKkYeWtKAuJKaQ3llhWZc5OydVu71rXauNdo_2X6rRTD6OZ-ulBwSWTOWwxsZc7duO7j96GqBoXjK1r3dquD4olrYJBznlC-Q41vgvB22q_G0H92Ff_7KtkX-3sp8GL3xv9srGr_difbvYNACmCRg</recordid><startdate>20240913</startdate><enddate>20240913</enddate><creator>Grabsch, Aurélien</creator><creator>Moriya, Hiroki</creator><creator>Mallick, Kirone</creator><creator>Sasamoto, Tomohiro</creator><creator>Bénichou, Olivier</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4316-5190</orcidid><orcidid>https://orcid.org/0000-0003-1759-6093</orcidid><orcidid>https://orcid.org/0000-0002-6749-2391</orcidid></search><sort><creationdate>20240913</creationdate><title>Semi-infinite Simple Exclusion Process: From Current Fluctuations to Target Survival</title><author>Grabsch, Aurélien ; Moriya, Hiroki ; Mallick, Kirone ; Sasamoto, Tomohiro ; Bénichou, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-62c7548fa02c71188bfc66a6abf4f79dd20140cc709c38578491c38000b18f823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Condensed Matter</topic><topic>Physics</topic><topic>Statistical Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grabsch, Aurélien</creatorcontrib><creatorcontrib>Moriya, Hiroki</creatorcontrib><creatorcontrib>Mallick, Kirone</creatorcontrib><creatorcontrib>Sasamoto, Tomohiro</creatorcontrib><creatorcontrib>Bénichou, Olivier</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grabsch, Aurélien</au><au>Moriya, Hiroki</au><au>Mallick, Kirone</au><au>Sasamoto, Tomohiro</au><au>Bénichou, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-infinite Simple Exclusion Process: From Current Fluctuations to Target Survival</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2024-09-13</date><risdate>2024</risdate><volume>133</volume><issue>11</issue><spage>117102</spage><pages>117102-</pages><artnum>117102</artnum><issn>0031-9007</issn><issn>1079-7114</issn><eissn>1079-7114</eissn><abstract>The symmetric simple exclusion process (SEP), where diffusive particles cannot overtake each other, is a paradigmatic model of transport in the single-file geometry. In this model, the study of currents has attracted a lot of attention, but so far most results are restricted to two geometries: (i) a finite system between two reservoirs, which does not conserve the number of particles but reaches a nonequilibrium steady state, and (ii) an infinite system which conserves the number of particles but never reaches a steady state. Here, we obtain an expression for the full cumulant generating function of the integrated current in the important intermediate situation of a semi-infinite system connected to a reservoir, which does not conserve the number of particles and never reaches a steady state. This results from the determination of the full spatial structure of the correlations, which we infer to obey the very same closed equation recently obtained in the infinite geometry and argue to be exact. Besides their intrinsic interest, these results allow us to solve two open problems: the survival probability of a fixed target in the SEP, and the statistics of the number of particles injected by a localized source.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>39331991</pmid><doi>10.1103/PhysRevLett.133.117102</doi><orcidid>https://orcid.org/0000-0003-4316-5190</orcidid><orcidid>https://orcid.org/0000-0003-1759-6093</orcidid><orcidid>https://orcid.org/0000-0002-6749-2391</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2024-09, Vol.133 (11), p.117102, Article 117102
issn 0031-9007
1079-7114
1079-7114
language eng
recordid cdi_hal_primary_oai_HAL_hal_04693920v1
source American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Condensed Matter
Physics
Statistical Mechanics
title Semi-infinite Simple Exclusion Process: From Current Fluctuations to Target Survival
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-infinite%20Simple%20Exclusion%20Process:%20From%20Current%20Fluctuations%20to%20Target%20Survival&rft.jtitle=Physical%20review%20letters&rft.au=Grabsch,%20Aur%C3%A9lien&rft.date=2024-09-13&rft.volume=133&rft.issue=11&rft.spage=117102&rft.pages=117102-&rft.artnum=117102&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.133.117102&rft_dat=%3Cproquest_hal_p%3E3110730266%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110730266&rft_id=info:pmid/39331991&rfr_iscdi=true