Three-dimensional conservation planning of fish biodiversity metrics to achieve the deep-sea 30×30 conservation target

Accelerating rate of human impact and environmental change severely affects marine biodiversity and increases the urgency to implement the Convention on Biological Diversity (CBD) 30×30 plan for conserving 30% of sea areas by 2030. However, area-based conservation targets are complex to identify in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Conservation biology 2024-09, p.e14368
Hauptverfasser: Mathon, Laetitia, Baletaud, Florian, Lebourges-Dhaussy, Anne, Lecellier, Gaël, Menkes, Christophe, Bachelier, Céline, Bonneville, Claire, Dejean, Tony, Dumas, Mahé, Fiat, Sylvie, Grelet, Jacques, Habasque, Jérémie, Manel, Stéphanie, Mannocci, Laura, Mouillot, David, Peran, Maëlis, Roudaut, Gildas, Sidobre, Christine, Varillon, David, Vigliola, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page e14368
container_title Conservation biology
container_volume
creator Mathon, Laetitia
Baletaud, Florian
Lebourges-Dhaussy, Anne
Lecellier, Gaël
Menkes, Christophe
Bachelier, Céline
Bonneville, Claire
Dejean, Tony
Dumas, Mahé
Fiat, Sylvie
Grelet, Jacques
Habasque, Jérémie
Manel, Stéphanie
Mannocci, Laura
Mouillot, David
Peran, Maëlis
Roudaut, Gildas
Sidobre, Christine
Varillon, David
Vigliola, Laurent
description Accelerating rate of human impact and environmental change severely affects marine biodiversity and increases the urgency to implement the Convention on Biological Diversity (CBD) 30×30 plan for conserving 30% of sea areas by 2030. However, area-based conservation targets are complex to identify in a 3-dimensional (3D) ocean where deep-sea features such as seamounts have been seldom studied mostly due to challenging methodologies to implement at great depths. Yet, the use of emerging technologies, such as environmental DNA combined with modern modeling frameworks, could help address the problem. We collected environmental DNA, echosounder acoustic, and video data at 15 seamounts and deep island slopes across the Coral Sea. We modeled 7 fish community metrics and the abundances of 45 individual species and molecular operational taxonomic units (MOTUs) in benthic and pelagic waters (down to 600-m deep) with boosted regression trees and generalized joint attribute models to describe biodiversity on seamounts and deep slopes and identify 3D protection solutions for achieving the CBD area target in New Caledonia (1.4 million km ). We prioritized the identified conservation units in a 3D space, based on various biodiversity targets, to meet the goal of protecting at least 30% of the spatial domain, with a focus on areas with high biodiversity. The relationship between biodiversity protection targets and the spatial area protected by the solution was linear. The scenario protecting 30% of each biodiversity metric preserved almost 30% of the considered spatial domain and accounted for the 3D distribution of biodiversity. Our study paves the way for the use of combined data collection methodologies to improve biodiversity estimates in 3D structured marine environments for the selection of conservation areas and for the use of biodiversity targets to achieve area-based international targets.
doi_str_mv 10.1111/cobi.14368
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04693805v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100275773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1618-da31d00c63d07f4d30eabfa04109f02afe6384b5e792a9d0d1e04645ed0f722c3</originalsourceid><addsrcrecordid>eNpVkctOGzEUQC0EIoF20w-ovASkgWt7Hp5lhHhJkbqBteWxrzOuZsapPQniS_ig_hgTQiPVmytfHZ3FPYT8YHDNpndjQuOvWS5KeUTmrOAiY5Woj8kcpJSZlDWfkbOUfgNAXbD8lMxEzXnBC5iT1-c2ImbW9zgkHwbdUROGhHGrx-lL150eBj-saHDU-dTSxgfrtxiTH99oj2P0JtExUG1aj1ukY4vUIq6zhJoK-Psu4H_jqOMKx2_kxOku4feveU5e7u-ebx-z5a-Hp9vFMjOsZDKzWjALYEphoXK5FYC6cRpyBrUDrh2WQuZNgVXNdW3BMoS8zAu04CrOjTgnl3tvqzu1jr7X8U0F7dXjYql2uwmvhYRiyyb2Ys-uY_izwTSq3ieD3XQCDJukBAPgVVFVYkKv9qiJIaWI7uBmoHZR1C6K-owywT-_vJumR3tA_1UQH-9yiRE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100275773</pqid></control><display><type>article</type><title>Three-dimensional conservation planning of fish biodiversity metrics to achieve the deep-sea 30×30 conservation target</title><source>Wiley Online Library All Journals</source><creator>Mathon, Laetitia ; Baletaud, Florian ; Lebourges-Dhaussy, Anne ; Lecellier, Gaël ; Menkes, Christophe ; Bachelier, Céline ; Bonneville, Claire ; Dejean, Tony ; Dumas, Mahé ; Fiat, Sylvie ; Grelet, Jacques ; Habasque, Jérémie ; Manel, Stéphanie ; Mannocci, Laura ; Mouillot, David ; Peran, Maëlis ; Roudaut, Gildas ; Sidobre, Christine ; Varillon, David ; Vigliola, Laurent</creator><creatorcontrib>Mathon, Laetitia ; Baletaud, Florian ; Lebourges-Dhaussy, Anne ; Lecellier, Gaël ; Menkes, Christophe ; Bachelier, Céline ; Bonneville, Claire ; Dejean, Tony ; Dumas, Mahé ; Fiat, Sylvie ; Grelet, Jacques ; Habasque, Jérémie ; Manel, Stéphanie ; Mannocci, Laura ; Mouillot, David ; Peran, Maëlis ; Roudaut, Gildas ; Sidobre, Christine ; Varillon, David ; Vigliola, Laurent</creatorcontrib><description>Accelerating rate of human impact and environmental change severely affects marine biodiversity and increases the urgency to implement the Convention on Biological Diversity (CBD) 30×30 plan for conserving 30% of sea areas by 2030. However, area-based conservation targets are complex to identify in a 3-dimensional (3D) ocean where deep-sea features such as seamounts have been seldom studied mostly due to challenging methodologies to implement at great depths. Yet, the use of emerging technologies, such as environmental DNA combined with modern modeling frameworks, could help address the problem. We collected environmental DNA, echosounder acoustic, and video data at 15 seamounts and deep island slopes across the Coral Sea. We modeled 7 fish community metrics and the abundances of 45 individual species and molecular operational taxonomic units (MOTUs) in benthic and pelagic waters (down to 600-m deep) with boosted regression trees and generalized joint attribute models to describe biodiversity on seamounts and deep slopes and identify 3D protection solutions for achieving the CBD area target in New Caledonia (1.4 million km ). We prioritized the identified conservation units in a 3D space, based on various biodiversity targets, to meet the goal of protecting at least 30% of the spatial domain, with a focus on areas with high biodiversity. The relationship between biodiversity protection targets and the spatial area protected by the solution was linear. The scenario protecting 30% of each biodiversity metric preserved almost 30% of the considered spatial domain and accounted for the 3D distribution of biodiversity. Our study paves the way for the use of combined data collection methodologies to improve biodiversity estimates in 3D structured marine environments for the selection of conservation areas and for the use of biodiversity targets to achieve area-based international targets.</description><identifier>ISSN: 0888-8892</identifier><identifier>ISSN: 1523-1739</identifier><identifier>EISSN: 1523-1739</identifier><identifier>DOI: 10.1111/cobi.14368</identifier><identifier>PMID: 39225250</identifier><language>eng</language><publisher>United States: Wiley</publisher><subject>Biodiversity and Ecology ; Earth Sciences ; Environmental Sciences ; Oceanography ; Sciences of the Universe</subject><ispartof>Conservation biology, 2024-09, p.e14368</ispartof><rights>2024 The Author(s). Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1618-da31d00c63d07f4d30eabfa04109f02afe6384b5e792a9d0d1e04645ed0f722c3</cites><orcidid>0000-0001-8147-8644 ; 0000-0001-8147-8177 ; 0000-0002-2868-9503 ; 0000-0002-2295-9285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39225250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04693805$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mathon, Laetitia</creatorcontrib><creatorcontrib>Baletaud, Florian</creatorcontrib><creatorcontrib>Lebourges-Dhaussy, Anne</creatorcontrib><creatorcontrib>Lecellier, Gaël</creatorcontrib><creatorcontrib>Menkes, Christophe</creatorcontrib><creatorcontrib>Bachelier, Céline</creatorcontrib><creatorcontrib>Bonneville, Claire</creatorcontrib><creatorcontrib>Dejean, Tony</creatorcontrib><creatorcontrib>Dumas, Mahé</creatorcontrib><creatorcontrib>Fiat, Sylvie</creatorcontrib><creatorcontrib>Grelet, Jacques</creatorcontrib><creatorcontrib>Habasque, Jérémie</creatorcontrib><creatorcontrib>Manel, Stéphanie</creatorcontrib><creatorcontrib>Mannocci, Laura</creatorcontrib><creatorcontrib>Mouillot, David</creatorcontrib><creatorcontrib>Peran, Maëlis</creatorcontrib><creatorcontrib>Roudaut, Gildas</creatorcontrib><creatorcontrib>Sidobre, Christine</creatorcontrib><creatorcontrib>Varillon, David</creatorcontrib><creatorcontrib>Vigliola, Laurent</creatorcontrib><title>Three-dimensional conservation planning of fish biodiversity metrics to achieve the deep-sea 30×30 conservation target</title><title>Conservation biology</title><addtitle>Conserv Biol</addtitle><description>Accelerating rate of human impact and environmental change severely affects marine biodiversity and increases the urgency to implement the Convention on Biological Diversity (CBD) 30×30 plan for conserving 30% of sea areas by 2030. However, area-based conservation targets are complex to identify in a 3-dimensional (3D) ocean where deep-sea features such as seamounts have been seldom studied mostly due to challenging methodologies to implement at great depths. Yet, the use of emerging technologies, such as environmental DNA combined with modern modeling frameworks, could help address the problem. We collected environmental DNA, echosounder acoustic, and video data at 15 seamounts and deep island slopes across the Coral Sea. We modeled 7 fish community metrics and the abundances of 45 individual species and molecular operational taxonomic units (MOTUs) in benthic and pelagic waters (down to 600-m deep) with boosted regression trees and generalized joint attribute models to describe biodiversity on seamounts and deep slopes and identify 3D protection solutions for achieving the CBD area target in New Caledonia (1.4 million km ). We prioritized the identified conservation units in a 3D space, based on various biodiversity targets, to meet the goal of protecting at least 30% of the spatial domain, with a focus on areas with high biodiversity. The relationship between biodiversity protection targets and the spatial area protected by the solution was linear. The scenario protecting 30% of each biodiversity metric preserved almost 30% of the considered spatial domain and accounted for the 3D distribution of biodiversity. Our study paves the way for the use of combined data collection methodologies to improve biodiversity estimates in 3D structured marine environments for the selection of conservation areas and for the use of biodiversity targets to achieve area-based international targets.</description><subject>Biodiversity and Ecology</subject><subject>Earth Sciences</subject><subject>Environmental Sciences</subject><subject>Oceanography</subject><subject>Sciences of the Universe</subject><issn>0888-8892</issn><issn>1523-1739</issn><issn>1523-1739</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkctOGzEUQC0EIoF20w-ovASkgWt7Hp5lhHhJkbqBteWxrzOuZsapPQniS_ig_hgTQiPVmytfHZ3FPYT8YHDNpndjQuOvWS5KeUTmrOAiY5Woj8kcpJSZlDWfkbOUfgNAXbD8lMxEzXnBC5iT1-c2ImbW9zgkHwbdUROGhHGrx-lL150eBj-saHDU-dTSxgfrtxiTH99oj2P0JtExUG1aj1ukY4vUIq6zhJoK-Psu4H_jqOMKx2_kxOku4feveU5e7u-ebx-z5a-Hp9vFMjOsZDKzWjALYEphoXK5FYC6cRpyBrUDrh2WQuZNgVXNdW3BMoS8zAu04CrOjTgnl3tvqzu1jr7X8U0F7dXjYql2uwmvhYRiyyb2Ys-uY_izwTSq3ieD3XQCDJukBAPgVVFVYkKv9qiJIaWI7uBmoHZR1C6K-owywT-_vJumR3tA_1UQH-9yiRE</recordid><startdate>20240903</startdate><enddate>20240903</enddate><creator>Mathon, Laetitia</creator><creator>Baletaud, Florian</creator><creator>Lebourges-Dhaussy, Anne</creator><creator>Lecellier, Gaël</creator><creator>Menkes, Christophe</creator><creator>Bachelier, Céline</creator><creator>Bonneville, Claire</creator><creator>Dejean, Tony</creator><creator>Dumas, Mahé</creator><creator>Fiat, Sylvie</creator><creator>Grelet, Jacques</creator><creator>Habasque, Jérémie</creator><creator>Manel, Stéphanie</creator><creator>Mannocci, Laura</creator><creator>Mouillot, David</creator><creator>Peran, Maëlis</creator><creator>Roudaut, Gildas</creator><creator>Sidobre, Christine</creator><creator>Varillon, David</creator><creator>Vigliola, Laurent</creator><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8147-8644</orcidid><orcidid>https://orcid.org/0000-0001-8147-8177</orcidid><orcidid>https://orcid.org/0000-0002-2868-9503</orcidid><orcidid>https://orcid.org/0000-0002-2295-9285</orcidid></search><sort><creationdate>20240903</creationdate><title>Three-dimensional conservation planning of fish biodiversity metrics to achieve the deep-sea 30×30 conservation target</title><author>Mathon, Laetitia ; Baletaud, Florian ; Lebourges-Dhaussy, Anne ; Lecellier, Gaël ; Menkes, Christophe ; Bachelier, Céline ; Bonneville, Claire ; Dejean, Tony ; Dumas, Mahé ; Fiat, Sylvie ; Grelet, Jacques ; Habasque, Jérémie ; Manel, Stéphanie ; Mannocci, Laura ; Mouillot, David ; Peran, Maëlis ; Roudaut, Gildas ; Sidobre, Christine ; Varillon, David ; Vigliola, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1618-da31d00c63d07f4d30eabfa04109f02afe6384b5e792a9d0d1e04645ed0f722c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biodiversity and Ecology</topic><topic>Earth Sciences</topic><topic>Environmental Sciences</topic><topic>Oceanography</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mathon, Laetitia</creatorcontrib><creatorcontrib>Baletaud, Florian</creatorcontrib><creatorcontrib>Lebourges-Dhaussy, Anne</creatorcontrib><creatorcontrib>Lecellier, Gaël</creatorcontrib><creatorcontrib>Menkes, Christophe</creatorcontrib><creatorcontrib>Bachelier, Céline</creatorcontrib><creatorcontrib>Bonneville, Claire</creatorcontrib><creatorcontrib>Dejean, Tony</creatorcontrib><creatorcontrib>Dumas, Mahé</creatorcontrib><creatorcontrib>Fiat, Sylvie</creatorcontrib><creatorcontrib>Grelet, Jacques</creatorcontrib><creatorcontrib>Habasque, Jérémie</creatorcontrib><creatorcontrib>Manel, Stéphanie</creatorcontrib><creatorcontrib>Mannocci, Laura</creatorcontrib><creatorcontrib>Mouillot, David</creatorcontrib><creatorcontrib>Peran, Maëlis</creatorcontrib><creatorcontrib>Roudaut, Gildas</creatorcontrib><creatorcontrib>Sidobre, Christine</creatorcontrib><creatorcontrib>Varillon, David</creatorcontrib><creatorcontrib>Vigliola, Laurent</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Conservation biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mathon, Laetitia</au><au>Baletaud, Florian</au><au>Lebourges-Dhaussy, Anne</au><au>Lecellier, Gaël</au><au>Menkes, Christophe</au><au>Bachelier, Céline</au><au>Bonneville, Claire</au><au>Dejean, Tony</au><au>Dumas, Mahé</au><au>Fiat, Sylvie</au><au>Grelet, Jacques</au><au>Habasque, Jérémie</au><au>Manel, Stéphanie</au><au>Mannocci, Laura</au><au>Mouillot, David</au><au>Peran, Maëlis</au><au>Roudaut, Gildas</au><au>Sidobre, Christine</au><au>Varillon, David</au><au>Vigliola, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional conservation planning of fish biodiversity metrics to achieve the deep-sea 30×30 conservation target</atitle><jtitle>Conservation biology</jtitle><addtitle>Conserv Biol</addtitle><date>2024-09-03</date><risdate>2024</risdate><spage>e14368</spage><pages>e14368-</pages><issn>0888-8892</issn><issn>1523-1739</issn><eissn>1523-1739</eissn><abstract>Accelerating rate of human impact and environmental change severely affects marine biodiversity and increases the urgency to implement the Convention on Biological Diversity (CBD) 30×30 plan for conserving 30% of sea areas by 2030. However, area-based conservation targets are complex to identify in a 3-dimensional (3D) ocean where deep-sea features such as seamounts have been seldom studied mostly due to challenging methodologies to implement at great depths. Yet, the use of emerging technologies, such as environmental DNA combined with modern modeling frameworks, could help address the problem. We collected environmental DNA, echosounder acoustic, and video data at 15 seamounts and deep island slopes across the Coral Sea. We modeled 7 fish community metrics and the abundances of 45 individual species and molecular operational taxonomic units (MOTUs) in benthic and pelagic waters (down to 600-m deep) with boosted regression trees and generalized joint attribute models to describe biodiversity on seamounts and deep slopes and identify 3D protection solutions for achieving the CBD area target in New Caledonia (1.4 million km ). We prioritized the identified conservation units in a 3D space, based on various biodiversity targets, to meet the goal of protecting at least 30% of the spatial domain, with a focus on areas with high biodiversity. The relationship between biodiversity protection targets and the spatial area protected by the solution was linear. The scenario protecting 30% of each biodiversity metric preserved almost 30% of the considered spatial domain and accounted for the 3D distribution of biodiversity. Our study paves the way for the use of combined data collection methodologies to improve biodiversity estimates in 3D structured marine environments for the selection of conservation areas and for the use of biodiversity targets to achieve area-based international targets.</abstract><cop>United States</cop><pub>Wiley</pub><pmid>39225250</pmid><doi>10.1111/cobi.14368</doi><orcidid>https://orcid.org/0000-0001-8147-8644</orcidid><orcidid>https://orcid.org/0000-0001-8147-8177</orcidid><orcidid>https://orcid.org/0000-0002-2868-9503</orcidid><orcidid>https://orcid.org/0000-0002-2295-9285</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-8892
ispartof Conservation biology, 2024-09, p.e14368
issn 0888-8892
1523-1739
1523-1739
language eng
recordid cdi_hal_primary_oai_HAL_hal_04693805v1
source Wiley Online Library All Journals
subjects Biodiversity and Ecology
Earth Sciences
Environmental Sciences
Oceanography
Sciences of the Universe
title Three-dimensional conservation planning of fish biodiversity metrics to achieve the deep-sea 30×30 conservation target
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A24%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20conservation%20planning%20of%20fish%20biodiversity%20metrics%20to%20achieve%20the%20deep-sea%2030%C3%9730%20conservation%20target&rft.jtitle=Conservation%20biology&rft.au=Mathon,%20Laetitia&rft.date=2024-09-03&rft.spage=e14368&rft.pages=e14368-&rft.issn=0888-8892&rft.eissn=1523-1739&rft_id=info:doi/10.1111/cobi.14368&rft_dat=%3Cproquest_hal_p%3E3100275773%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100275773&rft_id=info:pmid/39225250&rfr_iscdi=true