Unconventional Electromagnetic Response of Strongly Coupled Nanoparticles in the Thermal Infrared Region: Link with Effective Medium Properties and Incoherent Fields

The effective refractive index (neff) of suspensions of subwavelength particles is calculated in resonant domains of the thermal infrared region. On account of strong cooperative effects, notable deviations arise from what is expected for small particles; these features include unusual activation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Particle & particle systems characterization 2022-03, Vol.39 (3), p.n/a
Hauptverfasser: Guerra, Timothée, De Sousa Meneses, Domingos, Hugonin, Jean‐Paul, Blanchard, Cédric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Particle & particle systems characterization
container_volume 39
creator Guerra, Timothée
De Sousa Meneses, Domingos
Hugonin, Jean‐Paul
Blanchard, Cédric
description The effective refractive index (neff) of suspensions of subwavelength particles is calculated in resonant domains of the thermal infrared region. On account of strong cooperative effects, notable deviations arise from what is expected for small particles; these features include unusual activation of higher‐order multipoles despite the fact that the system can be homogenized and the manifestation of effective magnetic properties. The former feature leads to fundamental questions about the validity of the homogenization procedure, in particular regarding the meaning of the imaginary part of neff, that is absorption by the particles and therefore interrogates the degree to which the composite can be unrestrictedly described by an effective dielectric function. The latter feature offers interesting perspectives for the development of nanophotonic devices, based on dielectric subwavelength particles, exhibiting an effective magnetic response. Finally, the study of the coherent and incoherent decomposition of the field allows to demonstrate, counterintuitively, that a material can admit effective optical properties even in the presence of strong incoherent intensities and that the variance of the field over a statistical ensemble of configurations is a misleading indicator of scattering. Effective medium theories fail in predicting the properties of nanoparticles in the thermal infrared because of scattering and field fluctuations, shown here to be uncorrelated phenomena. While both lead to unconventional behaviors, an effective refractive index can be extracted through extensive numerical calculations, but with restrictions concerning either its statistical reproducibility over an ensemble of configurations or the nanoparticles’ absorption.
doi_str_mv 10.1002/ppsc.202100245
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04691773v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638847243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3515-860070cea8c54363a4bd7be4d9a75a750446844501b73a0667f535e6e4d105fb3</originalsourceid><addsrcrecordid>eNqFkVuPEyEYhonRxLp66zWJV15M_RgOM_Vu03QPSdVmD9eEMt-0rBRGmHbTH-T_lKZmvTQhIcDzPhBeQj4ymDKA-sswZDutoT4thHxFJkzWrBKMNa_JBGZcVNAq9Za8y_kJAJRkakJ-PwYbwwHD6GIwni482jHFndkEHJ2ld5iHGDLS2NP7chA2_kjncT947Oh3E-JgUuE8ZuoCHbdIH7aYdsV0G_pkUqHucFPcX-nShZ_02Y1buuj7cos7IP2Gndvv6CrFAYunWEzoStTGYimPolcOfZffkze98Rk__J0vyOPV4mF-Uy1_XN_OL5eV5ZLJqlUADVg0rZWCK27EumvWKLqZaWQZIIRqhZDA1g03oFTTSy5RFYKB7Nf8gnw-e7fG6yG5nUlHHY3TN5dLfdoDoWasafiBFfbTmR1S_LXHPOqnuE_lD7OuFW9b0dSCF2p6pmyKOSfsX7QM9KkpfapNv9RWArNz4Nl5PP6H1qvV_fxf9g9Xwp3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638847243</pqid></control><display><type>article</type><title>Unconventional Electromagnetic Response of Strongly Coupled Nanoparticles in the Thermal Infrared Region: Link with Effective Medium Properties and Incoherent Fields</title><source>Wiley Online Library All Journals</source><creator>Guerra, Timothée ; De Sousa Meneses, Domingos ; Hugonin, Jean‐Paul ; Blanchard, Cédric</creator><creatorcontrib>Guerra, Timothée ; De Sousa Meneses, Domingos ; Hugonin, Jean‐Paul ; Blanchard, Cédric</creatorcontrib><description>The effective refractive index (neff) of suspensions of subwavelength particles is calculated in resonant domains of the thermal infrared region. On account of strong cooperative effects, notable deviations arise from what is expected for small particles; these features include unusual activation of higher‐order multipoles despite the fact that the system can be homogenized and the manifestation of effective magnetic properties. The former feature leads to fundamental questions about the validity of the homogenization procedure, in particular regarding the meaning of the imaginary part of neff, that is absorption by the particles and therefore interrogates the degree to which the composite can be unrestrictedly described by an effective dielectric function. The latter feature offers interesting perspectives for the development of nanophotonic devices, based on dielectric subwavelength particles, exhibiting an effective magnetic response. Finally, the study of the coherent and incoherent decomposition of the field allows to demonstrate, counterintuitively, that a material can admit effective optical properties even in the presence of strong incoherent intensities and that the variance of the field over a statistical ensemble of configurations is a misleading indicator of scattering. Effective medium theories fail in predicting the properties of nanoparticles in the thermal infrared because of scattering and field fluctuations, shown here to be uncorrelated phenomena. While both lead to unconventional behaviors, an effective refractive index can be extracted through extensive numerical calculations, but with restrictions concerning either its statistical reproducibility over an ensemble of configurations or the nanoparticles’ absorption.</description><identifier>ISSN: 0934-0866</identifier><identifier>EISSN: 1521-4117</identifier><identifier>DOI: 10.1002/ppsc.202100245</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Electromagnetism ; Engineering Sciences ; homogenization ; incoherent light ; Magnetic properties ; Multipoles ; Nanoparticles ; nanostructures ; numerical simulation ; Optical properties ; Refractivity ; resonant systems ; scattering</subject><ispartof>Particle &amp; particle systems characterization, 2022-03, Vol.39 (3), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3515-860070cea8c54363a4bd7be4d9a75a750446844501b73a0667f535e6e4d105fb3</citedby><cites>FETCH-LOGICAL-c3515-860070cea8c54363a4bd7be4d9a75a750446844501b73a0667f535e6e4d105fb3</cites><orcidid>0000-0002-0701-5198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fppsc.202100245$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fppsc.202100245$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04691773$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guerra, Timothée</creatorcontrib><creatorcontrib>De Sousa Meneses, Domingos</creatorcontrib><creatorcontrib>Hugonin, Jean‐Paul</creatorcontrib><creatorcontrib>Blanchard, Cédric</creatorcontrib><title>Unconventional Electromagnetic Response of Strongly Coupled Nanoparticles in the Thermal Infrared Region: Link with Effective Medium Properties and Incoherent Fields</title><title>Particle &amp; particle systems characterization</title><description>The effective refractive index (neff) of suspensions of subwavelength particles is calculated in resonant domains of the thermal infrared region. On account of strong cooperative effects, notable deviations arise from what is expected for small particles; these features include unusual activation of higher‐order multipoles despite the fact that the system can be homogenized and the manifestation of effective magnetic properties. The former feature leads to fundamental questions about the validity of the homogenization procedure, in particular regarding the meaning of the imaginary part of neff, that is absorption by the particles and therefore interrogates the degree to which the composite can be unrestrictedly described by an effective dielectric function. The latter feature offers interesting perspectives for the development of nanophotonic devices, based on dielectric subwavelength particles, exhibiting an effective magnetic response. Finally, the study of the coherent and incoherent decomposition of the field allows to demonstrate, counterintuitively, that a material can admit effective optical properties even in the presence of strong incoherent intensities and that the variance of the field over a statistical ensemble of configurations is a misleading indicator of scattering. Effective medium theories fail in predicting the properties of nanoparticles in the thermal infrared because of scattering and field fluctuations, shown here to be uncorrelated phenomena. While both lead to unconventional behaviors, an effective refractive index can be extracted through extensive numerical calculations, but with restrictions concerning either its statistical reproducibility over an ensemble of configurations or the nanoparticles’ absorption.</description><subject>Electromagnetism</subject><subject>Engineering Sciences</subject><subject>homogenization</subject><subject>incoherent light</subject><subject>Magnetic properties</subject><subject>Multipoles</subject><subject>Nanoparticles</subject><subject>nanostructures</subject><subject>numerical simulation</subject><subject>Optical properties</subject><subject>Refractivity</subject><subject>resonant systems</subject><subject>scattering</subject><issn>0934-0866</issn><issn>1521-4117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkVuPEyEYhonRxLp66zWJV15M_RgOM_Vu03QPSdVmD9eEMt-0rBRGmHbTH-T_lKZmvTQhIcDzPhBeQj4ymDKA-sswZDutoT4thHxFJkzWrBKMNa_JBGZcVNAq9Za8y_kJAJRkakJ-PwYbwwHD6GIwni482jHFndkEHJ2ld5iHGDLS2NP7chA2_kjncT947Oh3E-JgUuE8ZuoCHbdIH7aYdsV0G_pkUqHucFPcX-nShZ_02Y1buuj7cos7IP2Gndvv6CrFAYunWEzoStTGYimPolcOfZffkze98Rk__J0vyOPV4mF-Uy1_XN_OL5eV5ZLJqlUADVg0rZWCK27EumvWKLqZaWQZIIRqhZDA1g03oFTTSy5RFYKB7Nf8gnw-e7fG6yG5nUlHHY3TN5dLfdoDoWasafiBFfbTmR1S_LXHPOqnuE_lD7OuFW9b0dSCF2p6pmyKOSfsX7QM9KkpfapNv9RWArNz4Nl5PP6H1qvV_fxf9g9Xwp3g</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Guerra, Timothée</creator><creator>De Sousa Meneses, Domingos</creator><creator>Hugonin, Jean‐Paul</creator><creator>Blanchard, Cédric</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0701-5198</orcidid></search><sort><creationdate>202203</creationdate><title>Unconventional Electromagnetic Response of Strongly Coupled Nanoparticles in the Thermal Infrared Region: Link with Effective Medium Properties and Incoherent Fields</title><author>Guerra, Timothée ; De Sousa Meneses, Domingos ; Hugonin, Jean‐Paul ; Blanchard, Cédric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3515-860070cea8c54363a4bd7be4d9a75a750446844501b73a0667f535e6e4d105fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Electromagnetism</topic><topic>Engineering Sciences</topic><topic>homogenization</topic><topic>incoherent light</topic><topic>Magnetic properties</topic><topic>Multipoles</topic><topic>Nanoparticles</topic><topic>nanostructures</topic><topic>numerical simulation</topic><topic>Optical properties</topic><topic>Refractivity</topic><topic>resonant systems</topic><topic>scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guerra, Timothée</creatorcontrib><creatorcontrib>De Sousa Meneses, Domingos</creatorcontrib><creatorcontrib>Hugonin, Jean‐Paul</creatorcontrib><creatorcontrib>Blanchard, Cédric</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Particle &amp; particle systems characterization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guerra, Timothée</au><au>De Sousa Meneses, Domingos</au><au>Hugonin, Jean‐Paul</au><au>Blanchard, Cédric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unconventional Electromagnetic Response of Strongly Coupled Nanoparticles in the Thermal Infrared Region: Link with Effective Medium Properties and Incoherent Fields</atitle><jtitle>Particle &amp; particle systems characterization</jtitle><date>2022-03</date><risdate>2022</risdate><volume>39</volume><issue>3</issue><epage>n/a</epage><issn>0934-0866</issn><eissn>1521-4117</eissn><abstract>The effective refractive index (neff) of suspensions of subwavelength particles is calculated in resonant domains of the thermal infrared region. On account of strong cooperative effects, notable deviations arise from what is expected for small particles; these features include unusual activation of higher‐order multipoles despite the fact that the system can be homogenized and the manifestation of effective magnetic properties. The former feature leads to fundamental questions about the validity of the homogenization procedure, in particular regarding the meaning of the imaginary part of neff, that is absorption by the particles and therefore interrogates the degree to which the composite can be unrestrictedly described by an effective dielectric function. The latter feature offers interesting perspectives for the development of nanophotonic devices, based on dielectric subwavelength particles, exhibiting an effective magnetic response. Finally, the study of the coherent and incoherent decomposition of the field allows to demonstrate, counterintuitively, that a material can admit effective optical properties even in the presence of strong incoherent intensities and that the variance of the field over a statistical ensemble of configurations is a misleading indicator of scattering. Effective medium theories fail in predicting the properties of nanoparticles in the thermal infrared because of scattering and field fluctuations, shown here to be uncorrelated phenomena. While both lead to unconventional behaviors, an effective refractive index can be extracted through extensive numerical calculations, but with restrictions concerning either its statistical reproducibility over an ensemble of configurations or the nanoparticles’ absorption.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ppsc.202100245</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0701-5198</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0934-0866
ispartof Particle & particle systems characterization, 2022-03, Vol.39 (3), p.n/a
issn 0934-0866
1521-4117
language eng
recordid cdi_hal_primary_oai_HAL_hal_04691773v1
source Wiley Online Library All Journals
subjects Electromagnetism
Engineering Sciences
homogenization
incoherent light
Magnetic properties
Multipoles
Nanoparticles
nanostructures
numerical simulation
Optical properties
Refractivity
resonant systems
scattering
title Unconventional Electromagnetic Response of Strongly Coupled Nanoparticles in the Thermal Infrared Region: Link with Effective Medium Properties and Incoherent Fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A57%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unconventional%20Electromagnetic%20Response%20of%20Strongly%20Coupled%20Nanoparticles%20in%20the%20Thermal%20Infrared%20Region:%20Link%20with%20Effective%20Medium%20Properties%20and%20Incoherent%20Fields&rft.jtitle=Particle%20&%20particle%20systems%20characterization&rft.au=Guerra,%20Timoth%C3%A9e&rft.date=2022-03&rft.volume=39&rft.issue=3&rft.epage=n/a&rft.issn=0934-0866&rft.eissn=1521-4117&rft_id=info:doi/10.1002/ppsc.202100245&rft_dat=%3Cproquest_hal_p%3E2638847243%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638847243&rft_id=info:pmid/&rfr_iscdi=true