The statistics of Rayleigh-Levy flight extrema
Rayleigh-Levy flights have played a significant role in cosmology as simplified models for understanding how matter distributes itself under gravitational influence. These models also exhibit numerous remarkable properties that enable predictions of a wide range of characteristics. Here, we derive t...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2024-09, Vol.689 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Astronomy and astrophysics (Berlin) |
container_volume | 689 |
creator | Bernardeau, Francis Pichon, Christophe |
description | Rayleigh-Levy flights have played a significant role in cosmology as simplified models for understanding how matter distributes itself under gravitational influence. These models also exhibit numerous remarkable properties that enable predictions of a wide range of characteristics. Here, we derive the one- and two-point statistics for extreme points within Rayleigh-Levy flights, spanning one to three dimensions (1D–3D) and stemming directly from fundamental principles. In the context of the mean field limit, we provide straightforward closed-form expressions for Euler counts and their correlations, particularly in relation to their clustering behaviour over long distances. Additionally, quadratures allow for the computation of extreme value number densities. A comparison between theoretical predictions in 1D and Monte Carlo measurements shows remarkable agreement. Given the widespread use of Rayleigh-Levy processes, these comprehensive findings offer significant promise not only in astrophysics, but also in broader applications beyond the field. |
doi_str_mv | 10.1051/0004-6361/202449628 |
format | Article |
fullrecord | <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04690990v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04690990v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_04690990v13</originalsourceid><addsrcrecordid>eNqVir0KwjAYRYMoWH-ewCWrQ9ovaRqbUUTp0Em6hyCpjaRUmlDs21tB3J3OPZeD0I5CTCGjCQBwIlJBEwaMcylYPkMR5SkjcMjEHEW_YolW3j8mZTRPIxRXjcE-6GB9sDePuxpf9eiMvTekNMOIazfNgM0r9KbVG7SotfNm--Ua7S_n6lSQRjv17G2r-1F12qriWKrPB1xIkBIGmv7TvgGYDzzR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The statistics of Rayleigh-Levy flight extrema</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bernardeau, Francis ; Pichon, Christophe</creator><creatorcontrib>Bernardeau, Francis ; Pichon, Christophe</creatorcontrib><description>Rayleigh-Levy flights have played a significant role in cosmology as simplified models for understanding how matter distributes itself under gravitational influence. These models also exhibit numerous remarkable properties that enable predictions of a wide range of characteristics. Here, we derive the one- and two-point statistics for extreme points within Rayleigh-Levy flights, spanning one to three dimensions (1D–3D) and stemming directly from fundamental principles. In the context of the mean field limit, we provide straightforward closed-form expressions for Euler counts and their correlations, particularly in relation to their clustering behaviour over long distances. Additionally, quadratures allow for the computation of extreme value number densities. A comparison between theoretical predictions in 1D and Monte Carlo measurements shows remarkable agreement. Given the widespread use of Rayleigh-Levy processes, these comprehensive findings offer significant promise not only in astrophysics, but also in broader applications beyond the field.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/202449628</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>Astrophysics ; Physics</subject><ispartof>Astronomy and astrophysics (Berlin), 2024-09, Vol.689</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0695-6735 ; 0000-0003-0695-6735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04690990$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bernardeau, Francis</creatorcontrib><creatorcontrib>Pichon, Christophe</creatorcontrib><title>The statistics of Rayleigh-Levy flight extrema</title><title>Astronomy and astrophysics (Berlin)</title><description>Rayleigh-Levy flights have played a significant role in cosmology as simplified models for understanding how matter distributes itself under gravitational influence. These models also exhibit numerous remarkable properties that enable predictions of a wide range of characteristics. Here, we derive the one- and two-point statistics for extreme points within Rayleigh-Levy flights, spanning one to three dimensions (1D–3D) and stemming directly from fundamental principles. In the context of the mean field limit, we provide straightforward closed-form expressions for Euler counts and their correlations, particularly in relation to their clustering behaviour over long distances. Additionally, quadratures allow for the computation of extreme value number densities. A comparison between theoretical predictions in 1D and Monte Carlo measurements shows remarkable agreement. Given the widespread use of Rayleigh-Levy processes, these comprehensive findings offer significant promise not only in astrophysics, but also in broader applications beyond the field.</description><subject>Astrophysics</subject><subject>Physics</subject><issn>0004-6361</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVir0KwjAYRYMoWH-ewCWrQ9ovaRqbUUTp0Em6hyCpjaRUmlDs21tB3J3OPZeD0I5CTCGjCQBwIlJBEwaMcylYPkMR5SkjcMjEHEW_YolW3j8mZTRPIxRXjcE-6GB9sDePuxpf9eiMvTekNMOIazfNgM0r9KbVG7SotfNm--Ua7S_n6lSQRjv17G2r-1F12qriWKrPB1xIkBIGmv7TvgGYDzzR</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Bernardeau, Francis</creator><creator>Pichon, Christophe</creator><general>EDP Sciences</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0695-6735</orcidid><orcidid>https://orcid.org/0000-0003-0695-6735</orcidid></search><sort><creationdate>202409</creationdate><title>The statistics of Rayleigh-Levy flight extrema</title><author>Bernardeau, Francis ; Pichon, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_04690990v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astrophysics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernardeau, Francis</creatorcontrib><creatorcontrib>Pichon, Christophe</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernardeau, Francis</au><au>Pichon, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The statistics of Rayleigh-Levy flight extrema</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2024-09</date><risdate>2024</risdate><volume>689</volume><issn>0004-6361</issn><eissn>1432-0756</eissn><abstract>Rayleigh-Levy flights have played a significant role in cosmology as simplified models for understanding how matter distributes itself under gravitational influence. These models also exhibit numerous remarkable properties that enable predictions of a wide range of characteristics. Here, we derive the one- and two-point statistics for extreme points within Rayleigh-Levy flights, spanning one to three dimensions (1D–3D) and stemming directly from fundamental principles. In the context of the mean field limit, we provide straightforward closed-form expressions for Euler counts and their correlations, particularly in relation to their clustering behaviour over long distances. Additionally, quadratures allow for the computation of extreme value number densities. A comparison between theoretical predictions in 1D and Monte Carlo measurements shows remarkable agreement. Given the widespread use of Rayleigh-Levy processes, these comprehensive findings offer significant promise not only in astrophysics, but also in broader applications beyond the field.</abstract><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202449628</doi><orcidid>https://orcid.org/0000-0003-0695-6735</orcidid><orcidid>https://orcid.org/0000-0003-0695-6735</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6361 |
ispartof | Astronomy and astrophysics (Berlin), 2024-09, Vol.689 |
issn | 0004-6361 1432-0756 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04690990v1 |
source | Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; EZB-FREE-00999 freely available EZB journals |
subjects | Astrophysics Physics |
title | The statistics of Rayleigh-Levy flight extrema |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A44%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20statistics%20of%20Rayleigh-Levy%20flight%20extrema&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Bernardeau,%20Francis&rft.date=2024-09&rft.volume=689&rft.issn=0004-6361&rft.eissn=1432-0756&rft_id=info:doi/10.1051/0004-6361/202449628&rft_dat=%3Chal%3Eoai_HAL_hal_04690990v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |