Synergistic humidity-responsive mechanical motion and proton conductivity in a cationic covalent organic framework

The development of flexible, humidity-responsive actuator materials is critical for advanced sensors and electronic systems. Current fabrication methods are complex and harsh. We present a novel approach that uses one-step synthesis at room temperature to prepare a self-standing cationic covalent or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chem 2024-08, Vol.10 (8), p.2500-2517
Hauptverfasser: Das, Gobinda, Shinde, Dhanraj B., Melepurakkal, Amrutha, Shelke, Manjusha V., Garai, Bikash, Bazin, Philippe, Ait Blal, Abdelhafid, Benyettou, Farah, Prakasam, Thirumurugan, Halim, Rasha Abdul, Ibrahim, Fayrouz Abou, Sharma, Sudhir Kumar, Varghese, Sabu, Weston, James, Jagannathan, Ramesh, Addicoat, Matthew A., Gándara, Felipe, Olson, Mark A., El-Roz, Mohamad, Trabolsi, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2517
container_issue 8
container_start_page 2500
container_title Chem
container_volume 10
creator Das, Gobinda
Shinde, Dhanraj B.
Melepurakkal, Amrutha
Shelke, Manjusha V.
Garai, Bikash
Bazin, Philippe
Ait Blal, Abdelhafid
Benyettou, Farah
Prakasam, Thirumurugan
Halim, Rasha Abdul
Ibrahim, Fayrouz Abou
Sharma, Sudhir Kumar
Varghese, Sabu
Weston, James
Jagannathan, Ramesh
Addicoat, Matthew A.
Gándara, Felipe
Olson, Mark A.
El-Roz, Mohamad
Trabolsi, Ali
description The development of flexible, humidity-responsive actuator materials is critical for advanced sensors and electronic systems. Current fabrication methods are complex and harsh. We present a novel approach that uses one-step synthesis at room temperature to prepare a self-standing cationic covalent organic framework (TG-DFP COF) film. Because hydrogen bonding and ionic surface coverage are present throughout the COF network, this material facilitates the rapid adsorption and desorption of water vapor, leading to an ultrafast actuating response rate of less than 1 s. At high humidity, the entrapped water molecules enhance the hydrogen-bonding interactions, leading to an impressive proton conductivity of 2.8 mS cm−1, which is among the highest reported for cationic COFs. This study demonstrates a unique 2D-ordered system that combines high proton conductivity and shape-changing ability with remarkable stability. [Display omitted] •Self-standing cationic covalent organic framework (COF) film•Ultrafast humidity-responsive actuation•In humidity, the COF film shows high proton conductivity of 2.8 mS cm−1 Moisture as an energy source to trigger the mechanical motion of materials is an emerging research area of interest for the development of smart switches and soft robots. Covalent organic frameworks (COFs) provide a superior platform to tune their structures with suitably responsive units and make them stimuli responsive. Hydrophobic COFs lack the ability to engage in polar interactions and limit the fabrication of moisture-sensitive actuators. To overcome this challenge, we have developed a cationic, flexible COF film pre-functionalized with a water-sensitive guanidinium moiety. By exploiting the role of H bonding in extended structure, we have successfully addressed two important problems. Anion-water H bonding enables a fast activation of mechanical motion. H-bonded water molecules allow the creation of efficient pathway for proton conduction. The designed COF paves the way for innovative advances in the field of moisture-responsive conductive smart materials. We showcase the synthesis of a flexible robust cationic COF film at room temperature. The film displays rapid and reversible actuation in response to changes in relative humidity over multiple cycles. The presence of anion-water hydrogen bonding facilitates effective proton-transport channels within the COF network, which leads to high proton conductivity in humid conditions.
doi_str_mv 10.1016/j.chempr.2024.04.018
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04675807v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2451929424001827</els_id><sourcerecordid>oai_HAL_hal_04675807v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-9a47340a0a6950b97cdb1f5e9e73c4a26b3764490b209a31f31068a00f7cfc733</originalsourceid><addsrcrecordid>eNp9kEFLw0AQhYMoWGr_gYe9ekicTTbZ7kUoRa1Q8KCel-1k025NsmE3jfTfuyEinoSBGWbe92BeFN1SSCjQ4v6Y4EE3nUtSSFkCoejyIpqlLKexSAW7_DNfRwvvjwBBklKewyxyb-dWu73xvUFyODWmNP05dtp3tvVm0KTReFCtQVWTxvbGtkS1Jemc7cOIti1P2JshQMSEE0E1aoIX2kHVuu2JdfuRJ5VTjf6y7vMmuqpU7fXip8-jj6fH9_Um3r4-v6xX2xhTKvpYKMYzBgpUIXLYCY7ljla5FppnyFRa7DJeMCZgl4JQGa0yCsVSAVQcK-RZNo_uJt-DqmXnTKPcWVpl5Ga1leMOWMHzJfCBBi2btOis905XvwAFOcYsj3KKWY4xB1SGDAP2MGE6_DEY7aRHo1vUpXEae1la87_BN7NUieI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synergistic humidity-responsive mechanical motion and proton conductivity in a cationic covalent organic framework</title><source>Alma/SFX Local Collection</source><creator>Das, Gobinda ; Shinde, Dhanraj B. ; Melepurakkal, Amrutha ; Shelke, Manjusha V. ; Garai, Bikash ; Bazin, Philippe ; Ait Blal, Abdelhafid ; Benyettou, Farah ; Prakasam, Thirumurugan ; Halim, Rasha Abdul ; Ibrahim, Fayrouz Abou ; Sharma, Sudhir Kumar ; Varghese, Sabu ; Weston, James ; Jagannathan, Ramesh ; Addicoat, Matthew A. ; Gándara, Felipe ; Olson, Mark A. ; El-Roz, Mohamad ; Trabolsi, Ali</creator><creatorcontrib>Das, Gobinda ; Shinde, Dhanraj B. ; Melepurakkal, Amrutha ; Shelke, Manjusha V. ; Garai, Bikash ; Bazin, Philippe ; Ait Blal, Abdelhafid ; Benyettou, Farah ; Prakasam, Thirumurugan ; Halim, Rasha Abdul ; Ibrahim, Fayrouz Abou ; Sharma, Sudhir Kumar ; Varghese, Sabu ; Weston, James ; Jagannathan, Ramesh ; Addicoat, Matthew A. ; Gándara, Felipe ; Olson, Mark A. ; El-Roz, Mohamad ; Trabolsi, Ali</creatorcontrib><description>The development of flexible, humidity-responsive actuator materials is critical for advanced sensors and electronic systems. Current fabrication methods are complex and harsh. We present a novel approach that uses one-step synthesis at room temperature to prepare a self-standing cationic covalent organic framework (TG-DFP COF) film. Because hydrogen bonding and ionic surface coverage are present throughout the COF network, this material facilitates the rapid adsorption and desorption of water vapor, leading to an ultrafast actuating response rate of less than 1 s. At high humidity, the entrapped water molecules enhance the hydrogen-bonding interactions, leading to an impressive proton conductivity of 2.8 mS cm−1, which is among the highest reported for cationic COFs. This study demonstrates a unique 2D-ordered system that combines high proton conductivity and shape-changing ability with remarkable stability. [Display omitted] •Self-standing cationic covalent organic framework (COF) film•Ultrafast humidity-responsive actuation•In humidity, the COF film shows high proton conductivity of 2.8 mS cm−1 Moisture as an energy source to trigger the mechanical motion of materials is an emerging research area of interest for the development of smart switches and soft robots. Covalent organic frameworks (COFs) provide a superior platform to tune their structures with suitably responsive units and make them stimuli responsive. Hydrophobic COFs lack the ability to engage in polar interactions and limit the fabrication of moisture-sensitive actuators. To overcome this challenge, we have developed a cationic, flexible COF film pre-functionalized with a water-sensitive guanidinium moiety. By exploiting the role of H bonding in extended structure, we have successfully addressed two important problems. Anion-water H bonding enables a fast activation of mechanical motion. H-bonded water molecules allow the creation of efficient pathway for proton conduction. The designed COF paves the way for innovative advances in the field of moisture-responsive conductive smart materials. We showcase the synthesis of a flexible robust cationic COF film at room temperature. The film displays rapid and reversible actuation in response to changes in relative humidity over multiple cycles. The presence of anion-water hydrogen bonding facilitates effective proton-transport channels within the COF network, which leads to high proton conductivity in humid conditions.</description><identifier>ISSN: 2451-9294</identifier><identifier>EISSN: 2451-9294</identifier><identifier>DOI: 10.1016/j.chempr.2024.04.018</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>cationic covalent organic framework ; Chemical Sciences ; humidity-responsive mechanical motion ; Material chemistry ; proton conductivity ; water harvesting</subject><ispartof>Chem, 2024-08, Vol.10 (8), p.2500-2517</ispartof><rights>2024 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-9a47340a0a6950b97cdb1f5e9e73c4a26b3764490b209a31f31068a00f7cfc733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27925,27926</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04675807$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Das, Gobinda</creatorcontrib><creatorcontrib>Shinde, Dhanraj B.</creatorcontrib><creatorcontrib>Melepurakkal, Amrutha</creatorcontrib><creatorcontrib>Shelke, Manjusha V.</creatorcontrib><creatorcontrib>Garai, Bikash</creatorcontrib><creatorcontrib>Bazin, Philippe</creatorcontrib><creatorcontrib>Ait Blal, Abdelhafid</creatorcontrib><creatorcontrib>Benyettou, Farah</creatorcontrib><creatorcontrib>Prakasam, Thirumurugan</creatorcontrib><creatorcontrib>Halim, Rasha Abdul</creatorcontrib><creatorcontrib>Ibrahim, Fayrouz Abou</creatorcontrib><creatorcontrib>Sharma, Sudhir Kumar</creatorcontrib><creatorcontrib>Varghese, Sabu</creatorcontrib><creatorcontrib>Weston, James</creatorcontrib><creatorcontrib>Jagannathan, Ramesh</creatorcontrib><creatorcontrib>Addicoat, Matthew A.</creatorcontrib><creatorcontrib>Gándara, Felipe</creatorcontrib><creatorcontrib>Olson, Mark A.</creatorcontrib><creatorcontrib>El-Roz, Mohamad</creatorcontrib><creatorcontrib>Trabolsi, Ali</creatorcontrib><title>Synergistic humidity-responsive mechanical motion and proton conductivity in a cationic covalent organic framework</title><title>Chem</title><description>The development of flexible, humidity-responsive actuator materials is critical for advanced sensors and electronic systems. Current fabrication methods are complex and harsh. We present a novel approach that uses one-step synthesis at room temperature to prepare a self-standing cationic covalent organic framework (TG-DFP COF) film. Because hydrogen bonding and ionic surface coverage are present throughout the COF network, this material facilitates the rapid adsorption and desorption of water vapor, leading to an ultrafast actuating response rate of less than 1 s. At high humidity, the entrapped water molecules enhance the hydrogen-bonding interactions, leading to an impressive proton conductivity of 2.8 mS cm−1, which is among the highest reported for cationic COFs. This study demonstrates a unique 2D-ordered system that combines high proton conductivity and shape-changing ability with remarkable stability. [Display omitted] •Self-standing cationic covalent organic framework (COF) film•Ultrafast humidity-responsive actuation•In humidity, the COF film shows high proton conductivity of 2.8 mS cm−1 Moisture as an energy source to trigger the mechanical motion of materials is an emerging research area of interest for the development of smart switches and soft robots. Covalent organic frameworks (COFs) provide a superior platform to tune their structures with suitably responsive units and make them stimuli responsive. Hydrophobic COFs lack the ability to engage in polar interactions and limit the fabrication of moisture-sensitive actuators. To overcome this challenge, we have developed a cationic, flexible COF film pre-functionalized with a water-sensitive guanidinium moiety. By exploiting the role of H bonding in extended structure, we have successfully addressed two important problems. Anion-water H bonding enables a fast activation of mechanical motion. H-bonded water molecules allow the creation of efficient pathway for proton conduction. The designed COF paves the way for innovative advances in the field of moisture-responsive conductive smart materials. We showcase the synthesis of a flexible robust cationic COF film at room temperature. The film displays rapid and reversible actuation in response to changes in relative humidity over multiple cycles. The presence of anion-water hydrogen bonding facilitates effective proton-transport channels within the COF network, which leads to high proton conductivity in humid conditions.</description><subject>cationic covalent organic framework</subject><subject>Chemical Sciences</subject><subject>humidity-responsive mechanical motion</subject><subject>Material chemistry</subject><subject>proton conductivity</subject><subject>water harvesting</subject><issn>2451-9294</issn><issn>2451-9294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLw0AQhYMoWGr_gYe9ekicTTbZ7kUoRa1Q8KCel-1k025NsmE3jfTfuyEinoSBGWbe92BeFN1SSCjQ4v6Y4EE3nUtSSFkCoejyIpqlLKexSAW7_DNfRwvvjwBBklKewyxyb-dWu73xvUFyODWmNP05dtp3tvVm0KTReFCtQVWTxvbGtkS1Jemc7cOIti1P2JshQMSEE0E1aoIX2kHVuu2JdfuRJ5VTjf6y7vMmuqpU7fXip8-jj6fH9_Um3r4-v6xX2xhTKvpYKMYzBgpUIXLYCY7ljla5FppnyFRa7DJeMCZgl4JQGa0yCsVSAVQcK-RZNo_uJt-DqmXnTKPcWVpl5Ga1leMOWMHzJfCBBi2btOis905XvwAFOcYsj3KKWY4xB1SGDAP2MGE6_DEY7aRHo1vUpXEae1la87_BN7NUieI</recordid><startdate>20240808</startdate><enddate>20240808</enddate><creator>Das, Gobinda</creator><creator>Shinde, Dhanraj B.</creator><creator>Melepurakkal, Amrutha</creator><creator>Shelke, Manjusha V.</creator><creator>Garai, Bikash</creator><creator>Bazin, Philippe</creator><creator>Ait Blal, Abdelhafid</creator><creator>Benyettou, Farah</creator><creator>Prakasam, Thirumurugan</creator><creator>Halim, Rasha Abdul</creator><creator>Ibrahim, Fayrouz Abou</creator><creator>Sharma, Sudhir Kumar</creator><creator>Varghese, Sabu</creator><creator>Weston, James</creator><creator>Jagannathan, Ramesh</creator><creator>Addicoat, Matthew A.</creator><creator>Gándara, Felipe</creator><creator>Olson, Mark A.</creator><creator>El-Roz, Mohamad</creator><creator>Trabolsi, Ali</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20240808</creationdate><title>Synergistic humidity-responsive mechanical motion and proton conductivity in a cationic covalent organic framework</title><author>Das, Gobinda ; Shinde, Dhanraj B. ; Melepurakkal, Amrutha ; Shelke, Manjusha V. ; Garai, Bikash ; Bazin, Philippe ; Ait Blal, Abdelhafid ; Benyettou, Farah ; Prakasam, Thirumurugan ; Halim, Rasha Abdul ; Ibrahim, Fayrouz Abou ; Sharma, Sudhir Kumar ; Varghese, Sabu ; Weston, James ; Jagannathan, Ramesh ; Addicoat, Matthew A. ; Gándara, Felipe ; Olson, Mark A. ; El-Roz, Mohamad ; Trabolsi, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-9a47340a0a6950b97cdb1f5e9e73c4a26b3764490b209a31f31068a00f7cfc733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>cationic covalent organic framework</topic><topic>Chemical Sciences</topic><topic>humidity-responsive mechanical motion</topic><topic>Material chemistry</topic><topic>proton conductivity</topic><topic>water harvesting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Gobinda</creatorcontrib><creatorcontrib>Shinde, Dhanraj B.</creatorcontrib><creatorcontrib>Melepurakkal, Amrutha</creatorcontrib><creatorcontrib>Shelke, Manjusha V.</creatorcontrib><creatorcontrib>Garai, Bikash</creatorcontrib><creatorcontrib>Bazin, Philippe</creatorcontrib><creatorcontrib>Ait Blal, Abdelhafid</creatorcontrib><creatorcontrib>Benyettou, Farah</creatorcontrib><creatorcontrib>Prakasam, Thirumurugan</creatorcontrib><creatorcontrib>Halim, Rasha Abdul</creatorcontrib><creatorcontrib>Ibrahim, Fayrouz Abou</creatorcontrib><creatorcontrib>Sharma, Sudhir Kumar</creatorcontrib><creatorcontrib>Varghese, Sabu</creatorcontrib><creatorcontrib>Weston, James</creatorcontrib><creatorcontrib>Jagannathan, Ramesh</creatorcontrib><creatorcontrib>Addicoat, Matthew A.</creatorcontrib><creatorcontrib>Gándara, Felipe</creatorcontrib><creatorcontrib>Olson, Mark A.</creatorcontrib><creatorcontrib>El-Roz, Mohamad</creatorcontrib><creatorcontrib>Trabolsi, Ali</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Chem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Gobinda</au><au>Shinde, Dhanraj B.</au><au>Melepurakkal, Amrutha</au><au>Shelke, Manjusha V.</au><au>Garai, Bikash</au><au>Bazin, Philippe</au><au>Ait Blal, Abdelhafid</au><au>Benyettou, Farah</au><au>Prakasam, Thirumurugan</au><au>Halim, Rasha Abdul</au><au>Ibrahim, Fayrouz Abou</au><au>Sharma, Sudhir Kumar</au><au>Varghese, Sabu</au><au>Weston, James</au><au>Jagannathan, Ramesh</au><au>Addicoat, Matthew A.</au><au>Gándara, Felipe</au><au>Olson, Mark A.</au><au>El-Roz, Mohamad</au><au>Trabolsi, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic humidity-responsive mechanical motion and proton conductivity in a cationic covalent organic framework</atitle><jtitle>Chem</jtitle><date>2024-08-08</date><risdate>2024</risdate><volume>10</volume><issue>8</issue><spage>2500</spage><epage>2517</epage><pages>2500-2517</pages><issn>2451-9294</issn><eissn>2451-9294</eissn><abstract>The development of flexible, humidity-responsive actuator materials is critical for advanced sensors and electronic systems. Current fabrication methods are complex and harsh. We present a novel approach that uses one-step synthesis at room temperature to prepare a self-standing cationic covalent organic framework (TG-DFP COF) film. Because hydrogen bonding and ionic surface coverage are present throughout the COF network, this material facilitates the rapid adsorption and desorption of water vapor, leading to an ultrafast actuating response rate of less than 1 s. At high humidity, the entrapped water molecules enhance the hydrogen-bonding interactions, leading to an impressive proton conductivity of 2.8 mS cm−1, which is among the highest reported for cationic COFs. This study demonstrates a unique 2D-ordered system that combines high proton conductivity and shape-changing ability with remarkable stability. [Display omitted] •Self-standing cationic covalent organic framework (COF) film•Ultrafast humidity-responsive actuation•In humidity, the COF film shows high proton conductivity of 2.8 mS cm−1 Moisture as an energy source to trigger the mechanical motion of materials is an emerging research area of interest for the development of smart switches and soft robots. Covalent organic frameworks (COFs) provide a superior platform to tune their structures with suitably responsive units and make them stimuli responsive. Hydrophobic COFs lack the ability to engage in polar interactions and limit the fabrication of moisture-sensitive actuators. To overcome this challenge, we have developed a cationic, flexible COF film pre-functionalized with a water-sensitive guanidinium moiety. By exploiting the role of H bonding in extended structure, we have successfully addressed two important problems. Anion-water H bonding enables a fast activation of mechanical motion. H-bonded water molecules allow the creation of efficient pathway for proton conduction. The designed COF paves the way for innovative advances in the field of moisture-responsive conductive smart materials. We showcase the synthesis of a flexible robust cationic COF film at room temperature. The film displays rapid and reversible actuation in response to changes in relative humidity over multiple cycles. The presence of anion-water hydrogen bonding facilitates effective proton-transport channels within the COF network, which leads to high proton conductivity in humid conditions.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.chempr.2024.04.018</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2451-9294
ispartof Chem, 2024-08, Vol.10 (8), p.2500-2517
issn 2451-9294
2451-9294
language eng
recordid cdi_hal_primary_oai_HAL_hal_04675807v1
source Alma/SFX Local Collection
subjects cationic covalent organic framework
Chemical Sciences
humidity-responsive mechanical motion
Material chemistry
proton conductivity
water harvesting
title Synergistic humidity-responsive mechanical motion and proton conductivity in a cationic covalent organic framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A16%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20humidity-responsive%20mechanical%20motion%20and%20proton%20conductivity%20in%20a%20cationic%20covalent%20organic%20framework&rft.jtitle=Chem&rft.au=Das,%20Gobinda&rft.date=2024-08-08&rft.volume=10&rft.issue=8&rft.spage=2500&rft.epage=2517&rft.pages=2500-2517&rft.issn=2451-9294&rft.eissn=2451-9294&rft_id=info:doi/10.1016/j.chempr.2024.04.018&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04675807v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S2451929424001827&rfr_iscdi=true