Contribution of MRI for the Early Diagnosis of Parkinsonism in Patients with Diagnostic Uncertainty

Background International clinical criteria are the reference for the diagnosis of degenerative parkinsonism in clinical research, but they may lack sensitivity and specificity in the early stages. Objectives To determine whether magnetic resonance imaging (MRI) analysis, through visual reading or ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Movement disorders 2024-05, Vol.39 (5), p.825-835
Hauptverfasser: Chougar, Lydia, Faucher, Alice, Faouzi, Johann, Lejeune, François‐Xavier, Gama Lobo, Gonçalo, Jovanovic, Carna, Cormier, Florence, Dupont, Gwendoline, Vidailhet, Marie, Corvol, Jean‐Christophe, Colliot, Olivier, Lehéricy, Stéphane, Grabli, David, Degos, Bertrand
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 835
container_issue 5
container_start_page 825
container_title Movement disorders
container_volume 39
creator Chougar, Lydia
Faucher, Alice
Faouzi, Johann
Lejeune, François‐Xavier
Gama Lobo, Gonçalo
Jovanovic, Carna
Cormier, Florence
Dupont, Gwendoline
Vidailhet, Marie
Corvol, Jean‐Christophe
Colliot, Olivier
Lehéricy, Stéphane
Grabli, David
Degos, Bertrand
description Background International clinical criteria are the reference for the diagnosis of degenerative parkinsonism in clinical research, but they may lack sensitivity and specificity in the early stages. Objectives To determine whether magnetic resonance imaging (MRI) analysis, through visual reading or machine‐learning approaches, improves diagnostic accuracy compared with clinical diagnosis at an early stage in patients referred for suspected degenerative parkinsonism. Materials Patients with initial diagnostic uncertainty between Parkinson's disease (PD), progressive supranuclear palsy (PSP), and multisystem atrophy (MSA), with brain MRI performed at the initial visit (V1) and available 2‐year follow‐up (V2), were included. We evaluated the accuracy of the diagnosis established based on: (1) the international clinical diagnostic criteria for PD, PSP, and MSA at V1 (“Clin1”); (2) MRI visual reading blinded to the clinical diagnosis (“MRI”); (3) both MRI visual reading and clinical criteria at V1 (“MRI and Clin1”), and (4) a machine‐learning algorithm (“Algorithm”). The gold standard diagnosis was established by expert consensus after a 2‐year follow‐up. Results We recruited 113 patients (53 with PD, 31 with PSP, and 29 with MSA). Considering the whole population, compared with clinical criteria at the initial visit (“Clin1”: balanced accuracy, 66.2%), MRI visual reading showed a diagnostic gain of 14.3% (“MRI”: 80.5%; P = 0.01), increasing to 19.2% when combined with the clinical diagnosis at the initial visit (“MRI and Clin1”: 85.4%; P 
doi_str_mv 10.1002/mds.29760
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04675671v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2958301252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4220-5ff6349c4f792faed006a30b492d757a1ff300fef974bfbe52703af1a68e3f073</originalsourceid><addsrcrecordid>eNp10U1PHCEYB3DStKnr2kO_gCHppR5GH2AYmKNZtWuypo0vZ8LMgovOgAVGs9--s11fEhNPBPjlz0P-CH0ncEgA6FG_TIe0FhV8QhPCGSkk5eIzmoCUvGBE8h20m9IdACGcVF_RDpOlrErKJqidBZ-ja4bsgsfB4ovLc2xDxHll8KmO3RqfOH3rQ3Jpc_1Hx3vnU_Au9dj5cZ-d8TnhJ5dXLzS7Ft_41sSsnc_rPfTF6i6Zb8_rFN2cnV7P5sXi96_z2fGiaEtKoeDWVqys29KKmlptlgCVZtCUNV0KLjSxlgFYY2tRNrYxnApg2hJdScMsCDZFB9vcle7UQ3S9jmsVtFPz44XanEFZCV4J8khG-3NrH2L4O5iUVe9Sa7pOexOGpGjNJQNCOR3pj3f0LgzRjz9RDPjIiKzl2-NtDClFY18nIKA2LamxJfW_pdHuPycOTW-Wr_KllhEcbcGT68z64yR1cXK1jfwHL0eaow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055831898</pqid></control><display><type>article</type><title>Contribution of MRI for the Early Diagnosis of Parkinsonism in Patients with Diagnostic Uncertainty</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chougar, Lydia ; Faucher, Alice ; Faouzi, Johann ; Lejeune, François‐Xavier ; Gama Lobo, Gonçalo ; Jovanovic, Carna ; Cormier, Florence ; Dupont, Gwendoline ; Vidailhet, Marie ; Corvol, Jean‐Christophe ; Colliot, Olivier ; Lehéricy, Stéphane ; Grabli, David ; Degos, Bertrand</creator><creatorcontrib>Chougar, Lydia ; Faucher, Alice ; Faouzi, Johann ; Lejeune, François‐Xavier ; Gama Lobo, Gonçalo ; Jovanovic, Carna ; Cormier, Florence ; Dupont, Gwendoline ; Vidailhet, Marie ; Corvol, Jean‐Christophe ; Colliot, Olivier ; Lehéricy, Stéphane ; Grabli, David ; Degos, Bertrand</creatorcontrib><description>Background International clinical criteria are the reference for the diagnosis of degenerative parkinsonism in clinical research, but they may lack sensitivity and specificity in the early stages. Objectives To determine whether magnetic resonance imaging (MRI) analysis, through visual reading or machine‐learning approaches, improves diagnostic accuracy compared with clinical diagnosis at an early stage in patients referred for suspected degenerative parkinsonism. Materials Patients with initial diagnostic uncertainty between Parkinson's disease (PD), progressive supranuclear palsy (PSP), and multisystem atrophy (MSA), with brain MRI performed at the initial visit (V1) and available 2‐year follow‐up (V2), were included. We evaluated the accuracy of the diagnosis established based on: (1) the international clinical diagnostic criteria for PD, PSP, and MSA at V1 (“Clin1”); (2) MRI visual reading blinded to the clinical diagnosis (“MRI”); (3) both MRI visual reading and clinical criteria at V1 (“MRI and Clin1”), and (4) a machine‐learning algorithm (“Algorithm”). The gold standard diagnosis was established by expert consensus after a 2‐year follow‐up. Results We recruited 113 patients (53 with PD, 31 with PSP, and 29 with MSA). Considering the whole population, compared with clinical criteria at the initial visit (“Clin1”: balanced accuracy, 66.2%), MRI visual reading showed a diagnostic gain of 14.3% (“MRI”: 80.5%; P = 0.01), increasing to 19.2% when combined with the clinical diagnosis at the initial visit (“MRI and Clin1”: 85.4%; P &lt; 0.0001). The algorithm achieved a diagnostic gain of 9.9% (“Algorithm”: 76.1%; P = 0.08). Conclusion Our study shows the use of MRI analysis, whether by visual reading or machine‐learning methods, for early differentiation of parkinsonism. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.</description><identifier>ISSN: 0885-3185</identifier><identifier>EISSN: 1531-8257</identifier><identifier>DOI: 10.1002/mds.29760</identifier><identifier>PMID: 38486423</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Accuracy ; Algorithms ; Atrophy ; Basal ganglia ; Central nervous system diseases ; Cognitive science ; Diagnosis ; Learning algorithms ; Life Sciences ; Machine learning ; Magnetic resonance imaging ; Medical diagnosis ; Movement disorders ; MRI ; multisystem atrophy ; Neurodegenerative diseases ; Neuroimaging ; Neuroscience ; Parkinson's disease ; Progressive supranuclear palsy ; Reading ; Visual discrimination learning</subject><ispartof>Movement disorders, 2024-05, Vol.39 (5), p.825-835</ispartof><rights>2024 The Authors. published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.</rights><rights>2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4220-5ff6349c4f792faed006a30b492d757a1ff300fef974bfbe52703af1a68e3f073</citedby><cites>FETCH-LOGICAL-c4220-5ff6349c4f792faed006a30b492d757a1ff300fef974bfbe52703af1a68e3f073</cites><orcidid>0000-0002-2409-9143 ; 0000-0001-9306-5687 ; 0000-0002-6229-5364 ; 0000-0001-5644-1292 ; 0000-0001-7325-0199 ; 0000-0002-9836-654X ; 0000-0002-5802-3518 ; 0000-0001-6798-4567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmds.29760$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmds.29760$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38486423$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04675671$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chougar, Lydia</creatorcontrib><creatorcontrib>Faucher, Alice</creatorcontrib><creatorcontrib>Faouzi, Johann</creatorcontrib><creatorcontrib>Lejeune, François‐Xavier</creatorcontrib><creatorcontrib>Gama Lobo, Gonçalo</creatorcontrib><creatorcontrib>Jovanovic, Carna</creatorcontrib><creatorcontrib>Cormier, Florence</creatorcontrib><creatorcontrib>Dupont, Gwendoline</creatorcontrib><creatorcontrib>Vidailhet, Marie</creatorcontrib><creatorcontrib>Corvol, Jean‐Christophe</creatorcontrib><creatorcontrib>Colliot, Olivier</creatorcontrib><creatorcontrib>Lehéricy, Stéphane</creatorcontrib><creatorcontrib>Grabli, David</creatorcontrib><creatorcontrib>Degos, Bertrand</creatorcontrib><title>Contribution of MRI for the Early Diagnosis of Parkinsonism in Patients with Diagnostic Uncertainty</title><title>Movement disorders</title><addtitle>Mov Disord</addtitle><description>Background International clinical criteria are the reference for the diagnosis of degenerative parkinsonism in clinical research, but they may lack sensitivity and specificity in the early stages. Objectives To determine whether magnetic resonance imaging (MRI) analysis, through visual reading or machine‐learning approaches, improves diagnostic accuracy compared with clinical diagnosis at an early stage in patients referred for suspected degenerative parkinsonism. Materials Patients with initial diagnostic uncertainty between Parkinson's disease (PD), progressive supranuclear palsy (PSP), and multisystem atrophy (MSA), with brain MRI performed at the initial visit (V1) and available 2‐year follow‐up (V2), were included. We evaluated the accuracy of the diagnosis established based on: (1) the international clinical diagnostic criteria for PD, PSP, and MSA at V1 (“Clin1”); (2) MRI visual reading blinded to the clinical diagnosis (“MRI”); (3) both MRI visual reading and clinical criteria at V1 (“MRI and Clin1”), and (4) a machine‐learning algorithm (“Algorithm”). The gold standard diagnosis was established by expert consensus after a 2‐year follow‐up. Results We recruited 113 patients (53 with PD, 31 with PSP, and 29 with MSA). Considering the whole population, compared with clinical criteria at the initial visit (“Clin1”: balanced accuracy, 66.2%), MRI visual reading showed a diagnostic gain of 14.3% (“MRI”: 80.5%; P = 0.01), increasing to 19.2% when combined with the clinical diagnosis at the initial visit (“MRI and Clin1”: 85.4%; P &lt; 0.0001). The algorithm achieved a diagnostic gain of 9.9% (“Algorithm”: 76.1%; P = 0.08). Conclusion Our study shows the use of MRI analysis, whether by visual reading or machine‐learning methods, for early differentiation of parkinsonism. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Atrophy</subject><subject>Basal ganglia</subject><subject>Central nervous system diseases</subject><subject>Cognitive science</subject><subject>Diagnosis</subject><subject>Learning algorithms</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Medical diagnosis</subject><subject>Movement disorders</subject><subject>MRI</subject><subject>multisystem atrophy</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Neuroscience</subject><subject>Parkinson's disease</subject><subject>Progressive supranuclear palsy</subject><subject>Reading</subject><subject>Visual discrimination learning</subject><issn>0885-3185</issn><issn>1531-8257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10U1PHCEYB3DStKnr2kO_gCHppR5GH2AYmKNZtWuypo0vZ8LMgovOgAVGs9--s11fEhNPBPjlz0P-CH0ncEgA6FG_TIe0FhV8QhPCGSkk5eIzmoCUvGBE8h20m9IdACGcVF_RDpOlrErKJqidBZ-ja4bsgsfB4ovLc2xDxHll8KmO3RqfOH3rQ3Jpc_1Hx3vnU_Au9dj5cZ-d8TnhJ5dXLzS7Ft_41sSsnc_rPfTF6i6Zb8_rFN2cnV7P5sXi96_z2fGiaEtKoeDWVqys29KKmlptlgCVZtCUNV0KLjSxlgFYY2tRNrYxnApg2hJdScMsCDZFB9vcle7UQ3S9jmsVtFPz44XanEFZCV4J8khG-3NrH2L4O5iUVe9Sa7pOexOGpGjNJQNCOR3pj3f0LgzRjz9RDPjIiKzl2-NtDClFY18nIKA2LamxJfW_pdHuPycOTW-Wr_KllhEcbcGT68z64yR1cXK1jfwHL0eaow</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Chougar, Lydia</creator><creator>Faucher, Alice</creator><creator>Faouzi, Johann</creator><creator>Lejeune, François‐Xavier</creator><creator>Gama Lobo, Gonçalo</creator><creator>Jovanovic, Carna</creator><creator>Cormier, Florence</creator><creator>Dupont, Gwendoline</creator><creator>Vidailhet, Marie</creator><creator>Corvol, Jean‐Christophe</creator><creator>Colliot, Olivier</creator><creator>Lehéricy, Stéphane</creator><creator>Grabli, David</creator><creator>Degos, Bertrand</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2409-9143</orcidid><orcidid>https://orcid.org/0000-0001-9306-5687</orcidid><orcidid>https://orcid.org/0000-0002-6229-5364</orcidid><orcidid>https://orcid.org/0000-0001-5644-1292</orcidid><orcidid>https://orcid.org/0000-0001-7325-0199</orcidid><orcidid>https://orcid.org/0000-0002-9836-654X</orcidid><orcidid>https://orcid.org/0000-0002-5802-3518</orcidid><orcidid>https://orcid.org/0000-0001-6798-4567</orcidid></search><sort><creationdate>202405</creationdate><title>Contribution of MRI for the Early Diagnosis of Parkinsonism in Patients with Diagnostic Uncertainty</title><author>Chougar, Lydia ; Faucher, Alice ; Faouzi, Johann ; Lejeune, François‐Xavier ; Gama Lobo, Gonçalo ; Jovanovic, Carna ; Cormier, Florence ; Dupont, Gwendoline ; Vidailhet, Marie ; Corvol, Jean‐Christophe ; Colliot, Olivier ; Lehéricy, Stéphane ; Grabli, David ; Degos, Bertrand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4220-5ff6349c4f792faed006a30b492d757a1ff300fef974bfbe52703af1a68e3f073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Atrophy</topic><topic>Basal ganglia</topic><topic>Central nervous system diseases</topic><topic>Cognitive science</topic><topic>Diagnosis</topic><topic>Learning algorithms</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Medical diagnosis</topic><topic>Movement disorders</topic><topic>MRI</topic><topic>multisystem atrophy</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Neuroscience</topic><topic>Parkinson's disease</topic><topic>Progressive supranuclear palsy</topic><topic>Reading</topic><topic>Visual discrimination learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chougar, Lydia</creatorcontrib><creatorcontrib>Faucher, Alice</creatorcontrib><creatorcontrib>Faouzi, Johann</creatorcontrib><creatorcontrib>Lejeune, François‐Xavier</creatorcontrib><creatorcontrib>Gama Lobo, Gonçalo</creatorcontrib><creatorcontrib>Jovanovic, Carna</creatorcontrib><creatorcontrib>Cormier, Florence</creatorcontrib><creatorcontrib>Dupont, Gwendoline</creatorcontrib><creatorcontrib>Vidailhet, Marie</creatorcontrib><creatorcontrib>Corvol, Jean‐Christophe</creatorcontrib><creatorcontrib>Colliot, Olivier</creatorcontrib><creatorcontrib>Lehéricy, Stéphane</creatorcontrib><creatorcontrib>Grabli, David</creatorcontrib><creatorcontrib>Degos, Bertrand</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Movement disorders</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chougar, Lydia</au><au>Faucher, Alice</au><au>Faouzi, Johann</au><au>Lejeune, François‐Xavier</au><au>Gama Lobo, Gonçalo</au><au>Jovanovic, Carna</au><au>Cormier, Florence</au><au>Dupont, Gwendoline</au><au>Vidailhet, Marie</au><au>Corvol, Jean‐Christophe</au><au>Colliot, Olivier</au><au>Lehéricy, Stéphane</au><au>Grabli, David</au><au>Degos, Bertrand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contribution of MRI for the Early Diagnosis of Parkinsonism in Patients with Diagnostic Uncertainty</atitle><jtitle>Movement disorders</jtitle><addtitle>Mov Disord</addtitle><date>2024-05</date><risdate>2024</risdate><volume>39</volume><issue>5</issue><spage>825</spage><epage>835</epage><pages>825-835</pages><issn>0885-3185</issn><eissn>1531-8257</eissn><abstract>Background International clinical criteria are the reference for the diagnosis of degenerative parkinsonism in clinical research, but they may lack sensitivity and specificity in the early stages. Objectives To determine whether magnetic resonance imaging (MRI) analysis, through visual reading or machine‐learning approaches, improves diagnostic accuracy compared with clinical diagnosis at an early stage in patients referred for suspected degenerative parkinsonism. Materials Patients with initial diagnostic uncertainty between Parkinson's disease (PD), progressive supranuclear palsy (PSP), and multisystem atrophy (MSA), with brain MRI performed at the initial visit (V1) and available 2‐year follow‐up (V2), were included. We evaluated the accuracy of the diagnosis established based on: (1) the international clinical diagnostic criteria for PD, PSP, and MSA at V1 (“Clin1”); (2) MRI visual reading blinded to the clinical diagnosis (“MRI”); (3) both MRI visual reading and clinical criteria at V1 (“MRI and Clin1”), and (4) a machine‐learning algorithm (“Algorithm”). The gold standard diagnosis was established by expert consensus after a 2‐year follow‐up. Results We recruited 113 patients (53 with PD, 31 with PSP, and 29 with MSA). Considering the whole population, compared with clinical criteria at the initial visit (“Clin1”: balanced accuracy, 66.2%), MRI visual reading showed a diagnostic gain of 14.3% (“MRI”: 80.5%; P = 0.01), increasing to 19.2% when combined with the clinical diagnosis at the initial visit (“MRI and Clin1”: 85.4%; P &lt; 0.0001). The algorithm achieved a diagnostic gain of 9.9% (“Algorithm”: 76.1%; P = 0.08). Conclusion Our study shows the use of MRI analysis, whether by visual reading or machine‐learning methods, for early differentiation of parkinsonism. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38486423</pmid><doi>10.1002/mds.29760</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2409-9143</orcidid><orcidid>https://orcid.org/0000-0001-9306-5687</orcidid><orcidid>https://orcid.org/0000-0002-6229-5364</orcidid><orcidid>https://orcid.org/0000-0001-5644-1292</orcidid><orcidid>https://orcid.org/0000-0001-7325-0199</orcidid><orcidid>https://orcid.org/0000-0002-9836-654X</orcidid><orcidid>https://orcid.org/0000-0002-5802-3518</orcidid><orcidid>https://orcid.org/0000-0001-6798-4567</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-3185
ispartof Movement disorders, 2024-05, Vol.39 (5), p.825-835
issn 0885-3185
1531-8257
language eng
recordid cdi_hal_primary_oai_HAL_hal_04675671v1
source Wiley Online Library Journals Frontfile Complete
subjects Accuracy
Algorithms
Atrophy
Basal ganglia
Central nervous system diseases
Cognitive science
Diagnosis
Learning algorithms
Life Sciences
Machine learning
Magnetic resonance imaging
Medical diagnosis
Movement disorders
MRI
multisystem atrophy
Neurodegenerative diseases
Neuroimaging
Neuroscience
Parkinson's disease
Progressive supranuclear palsy
Reading
Visual discrimination learning
title Contribution of MRI for the Early Diagnosis of Parkinsonism in Patients with Diagnostic Uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A27%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contribution%20of%20MRI%20for%20the%20Early%20Diagnosis%20of%20Parkinsonism%20in%20Patients%20with%20Diagnostic%20Uncertainty&rft.jtitle=Movement%20disorders&rft.au=Chougar,%20Lydia&rft.date=2024-05&rft.volume=39&rft.issue=5&rft.spage=825&rft.epage=835&rft.pages=825-835&rft.issn=0885-3185&rft.eissn=1531-8257&rft_id=info:doi/10.1002/mds.29760&rft_dat=%3Cproquest_hal_p%3E2958301252%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055831898&rft_id=info:pmid/38486423&rfr_iscdi=true