Online identification of pharmacodynamic parameters for closed-loop anesthesia with model predictive control

In this paper, a controller is proposed to automate the injection of propofol and remifentanil during general anesthesia using bispectral index (BIS) measurement. To handle the parameter uncertainties due to inter- and intra-patient variability, an extended estimator is used coupled with a Model Pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & chemical engineering 2024-12, Vol.191, p.108837, Article 108837
Hauptverfasser: Aubouin–Pairault, Bob, Fiacchini, Mirko, Dang, Thao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108837
container_title Computers & chemical engineering
container_volume 191
creator Aubouin–Pairault, Bob
Fiacchini, Mirko
Dang, Thao
description In this paper, a controller is proposed to automate the injection of propofol and remifentanil during general anesthesia using bispectral index (BIS) measurement. To handle the parameter uncertainties due to inter- and intra-patient variability, an extended estimator is used coupled with a Model Predictive Controller (MPC). Two methods are considered for the estimator: the first one is a multiple extended Kalman filter (MEKF), and the second is a moving horizon estimator (MHE). The state and parameter estimations are then used in the MPC to compute the next drug rates. The methods are compared with a PID from the literature. The robustness of the controller is evaluated using Monte-Carlo simulations on a wide population, introducing uncertainties in all parts of the model. Results both on the induction and maintenance phases of anesthesia show the potential interest in using this adaptive method to handle parameter uncertainties. •Two new control methods are proposed to dose propofol and remifentanil using BIS signal during general anesthesia.•The methods estimate both drug concentration and patient sensitivity before computing optimal drug rates.•Compared to a published PID, both methods improve the overall regulation of depth of hypnosis.
doi_str_mv 10.1016/j.compchemeng.2024.108837
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04672940v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098135424002552</els_id><sourcerecordid>S0098135424002552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c229t-5558093db2b3653c98c8eefb27e4b19851c0e07ef9a87e95f3aef061e32f90863</originalsourceid><addsrcrecordid>eNqNkE1LAzEYhIMoWD_-Qzx62Jps9iM5lqJWKPSi55DNvnFTssmShEr_vVsq4tHTwDAzMA9CD5QsKaHN036pwzjpAUbwn8uSlNXsc87aC7SgvGVFxdr6Ei0IEbygrK6u0U1Ke0LmJOcL5HbeWQ_Y9uCzNVarbIPHweBpUHFUOvRHr0ar8aSiGiFDTNiEiLULCfrChTBh5SHlAZJV-MvmAY-hB4enCL3V2R4A6-BzDO4OXRnlEtz_6C36eHl-X2-K7e71bb3aFrosRS7quuZEsL4rO9bUTAuuOYDpyhaqjgpeU02AtGCE4i2I2jAFhjQUWGkE4Q27RY_n3UE5OUU7qniUQVm5WW3lySNV05aiIgc6Z8U5q2NIKYL5LVAiT4jlXv5BLE-I5Rnx3F2fuzCfOViIMmkLXs-_I-gs-2D_sfINHCSNMA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Online identification of pharmacodynamic parameters for closed-loop anesthesia with model predictive control</title><source>Elsevier ScienceDirect Journals</source><creator>Aubouin–Pairault, Bob ; Fiacchini, Mirko ; Dang, Thao</creator><creatorcontrib>Aubouin–Pairault, Bob ; Fiacchini, Mirko ; Dang, Thao</creatorcontrib><description>In this paper, a controller is proposed to automate the injection of propofol and remifentanil during general anesthesia using bispectral index (BIS) measurement. To handle the parameter uncertainties due to inter- and intra-patient variability, an extended estimator is used coupled with a Model Predictive Controller (MPC). Two methods are considered for the estimator: the first one is a multiple extended Kalman filter (MEKF), and the second is a moving horizon estimator (MHE). The state and parameter estimations are then used in the MPC to compute the next drug rates. The methods are compared with a PID from the literature. The robustness of the controller is evaluated using Monte-Carlo simulations on a wide population, introducing uncertainties in all parts of the model. Results both on the induction and maintenance phases of anesthesia show the potential interest in using this adaptive method to handle parameter uncertainties. •Two new control methods are proposed to dose propofol and remifentanil using BIS signal during general anesthesia.•The methods estimate both drug concentration and patient sensitivity before computing optimal drug rates.•Compared to a published PID, both methods improve the overall regulation of depth of hypnosis.</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/j.compchemeng.2024.108837</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Automatic Control Engineering ; Bioengineering ; Closed-loop anesthesia ; Computer Science ; Drug control ; Life Sciences ; Model predictive control ; Moving horizon estimator ; Multi-Kalman filters ; Pharmaceutical sciences ; Uncertain systems</subject><ispartof>Computers &amp; chemical engineering, 2024-12, Vol.191, p.108837, Article 108837</ispartof><rights>2024</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c229t-5558093db2b3653c98c8eefb27e4b19851c0e07ef9a87e95f3aef061e32f90863</cites><orcidid>0000-0003-0029-438X ; 0000-0002-3601-0302 ; 0000-0002-3637-1415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compchemeng.2024.108837$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04672940$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aubouin–Pairault, Bob</creatorcontrib><creatorcontrib>Fiacchini, Mirko</creatorcontrib><creatorcontrib>Dang, Thao</creatorcontrib><title>Online identification of pharmacodynamic parameters for closed-loop anesthesia with model predictive control</title><title>Computers &amp; chemical engineering</title><description>In this paper, a controller is proposed to automate the injection of propofol and remifentanil during general anesthesia using bispectral index (BIS) measurement. To handle the parameter uncertainties due to inter- and intra-patient variability, an extended estimator is used coupled with a Model Predictive Controller (MPC). Two methods are considered for the estimator: the first one is a multiple extended Kalman filter (MEKF), and the second is a moving horizon estimator (MHE). The state and parameter estimations are then used in the MPC to compute the next drug rates. The methods are compared with a PID from the literature. The robustness of the controller is evaluated using Monte-Carlo simulations on a wide population, introducing uncertainties in all parts of the model. Results both on the induction and maintenance phases of anesthesia show the potential interest in using this adaptive method to handle parameter uncertainties. •Two new control methods are proposed to dose propofol and remifentanil using BIS signal during general anesthesia.•The methods estimate both drug concentration and patient sensitivity before computing optimal drug rates.•Compared to a published PID, both methods improve the overall regulation of depth of hypnosis.</description><subject>Automatic Control Engineering</subject><subject>Bioengineering</subject><subject>Closed-loop anesthesia</subject><subject>Computer Science</subject><subject>Drug control</subject><subject>Life Sciences</subject><subject>Model predictive control</subject><subject>Moving horizon estimator</subject><subject>Multi-Kalman filters</subject><subject>Pharmaceutical sciences</subject><subject>Uncertain systems</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEYhIMoWD_-Qzx62Jps9iM5lqJWKPSi55DNvnFTssmShEr_vVsq4tHTwDAzMA9CD5QsKaHN036pwzjpAUbwn8uSlNXsc87aC7SgvGVFxdr6Ei0IEbygrK6u0U1Ke0LmJOcL5HbeWQ_Y9uCzNVarbIPHweBpUHFUOvRHr0ar8aSiGiFDTNiEiLULCfrChTBh5SHlAZJV-MvmAY-hB4enCL3V2R4A6-BzDO4OXRnlEtz_6C36eHl-X2-K7e71bb3aFrosRS7quuZEsL4rO9bUTAuuOYDpyhaqjgpeU02AtGCE4i2I2jAFhjQUWGkE4Q27RY_n3UE5OUU7qniUQVm5WW3lySNV05aiIgc6Z8U5q2NIKYL5LVAiT4jlXv5BLE-I5Rnx3F2fuzCfOViIMmkLXs-_I-gs-2D_sfINHCSNMA</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Aubouin–Pairault, Bob</creator><creator>Fiacchini, Mirko</creator><creator>Dang, Thao</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0029-438X</orcidid><orcidid>https://orcid.org/0000-0002-3601-0302</orcidid><orcidid>https://orcid.org/0000-0002-3637-1415</orcidid></search><sort><creationdate>20241201</creationdate><title>Online identification of pharmacodynamic parameters for closed-loop anesthesia with model predictive control</title><author>Aubouin–Pairault, Bob ; Fiacchini, Mirko ; Dang, Thao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c229t-5558093db2b3653c98c8eefb27e4b19851c0e07ef9a87e95f3aef061e32f90863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automatic Control Engineering</topic><topic>Bioengineering</topic><topic>Closed-loop anesthesia</topic><topic>Computer Science</topic><topic>Drug control</topic><topic>Life Sciences</topic><topic>Model predictive control</topic><topic>Moving horizon estimator</topic><topic>Multi-Kalman filters</topic><topic>Pharmaceutical sciences</topic><topic>Uncertain systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aubouin–Pairault, Bob</creatorcontrib><creatorcontrib>Fiacchini, Mirko</creatorcontrib><creatorcontrib>Dang, Thao</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computers &amp; chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aubouin–Pairault, Bob</au><au>Fiacchini, Mirko</au><au>Dang, Thao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online identification of pharmacodynamic parameters for closed-loop anesthesia with model predictive control</atitle><jtitle>Computers &amp; chemical engineering</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>191</volume><spage>108837</spage><pages>108837-</pages><artnum>108837</artnum><issn>0098-1354</issn><eissn>1873-4375</eissn><abstract>In this paper, a controller is proposed to automate the injection of propofol and remifentanil during general anesthesia using bispectral index (BIS) measurement. To handle the parameter uncertainties due to inter- and intra-patient variability, an extended estimator is used coupled with a Model Predictive Controller (MPC). Two methods are considered for the estimator: the first one is a multiple extended Kalman filter (MEKF), and the second is a moving horizon estimator (MHE). The state and parameter estimations are then used in the MPC to compute the next drug rates. The methods are compared with a PID from the literature. The robustness of the controller is evaluated using Monte-Carlo simulations on a wide population, introducing uncertainties in all parts of the model. Results both on the induction and maintenance phases of anesthesia show the potential interest in using this adaptive method to handle parameter uncertainties. •Two new control methods are proposed to dose propofol and remifentanil using BIS signal during general anesthesia.•The methods estimate both drug concentration and patient sensitivity before computing optimal drug rates.•Compared to a published PID, both methods improve the overall regulation of depth of hypnosis.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compchemeng.2024.108837</doi><orcidid>https://orcid.org/0000-0003-0029-438X</orcidid><orcidid>https://orcid.org/0000-0002-3601-0302</orcidid><orcidid>https://orcid.org/0000-0002-3637-1415</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0098-1354
ispartof Computers & chemical engineering, 2024-12, Vol.191, p.108837, Article 108837
issn 0098-1354
1873-4375
language eng
recordid cdi_hal_primary_oai_HAL_hal_04672940v1
source Elsevier ScienceDirect Journals
subjects Automatic Control Engineering
Bioengineering
Closed-loop anesthesia
Computer Science
Drug control
Life Sciences
Model predictive control
Moving horizon estimator
Multi-Kalman filters
Pharmaceutical sciences
Uncertain systems
title Online identification of pharmacodynamic parameters for closed-loop anesthesia with model predictive control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A19%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20identification%20of%20pharmacodynamic%20parameters%20for%20closed-loop%20anesthesia%20with%20model%20predictive%20control&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=Aubouin%E2%80%93Pairault,%20Bob&rft.date=2024-12-01&rft.volume=191&rft.spage=108837&rft.pages=108837-&rft.artnum=108837&rft.issn=0098-1354&rft.eissn=1873-4375&rft_id=info:doi/10.1016/j.compchemeng.2024.108837&rft_dat=%3Celsevier_hal_p%3ES0098135424002552%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0098135424002552&rfr_iscdi=true