Mathematical modeling of adipocyte size distributions: Identifiability and parameter estimation from rat data

Fat cells, called adipocytes, are designed to regulate energy homeostasis by storing energy in the form of lipids. Adipocyte size distribution is assumed to play a role in the development of obesity-related diseases. These cells that do not have a characteristic size, indeed a bimodal size distribut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 2024-03, Vol.581
Hauptverfasser: Giacobbi, Anne-Sophie, Meyer, Leo, Ribot, Magali, Yvinec, Romain, Soula, Hedi, Audebert, Chloe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of theoretical biology
container_volume 581
creator Giacobbi, Anne-Sophie
Meyer, Leo
Ribot, Magali
Yvinec, Romain
Soula, Hedi
Audebert, Chloe
description Fat cells, called adipocytes, are designed to regulate energy homeostasis by storing energy in the form of lipids. Adipocyte size distribution is assumed to play a role in the development of obesity-related diseases. These cells that do not have a characteristic size, indeed a bimodal size distribution is observed in adipose tissue. We propose a model based on a partial differential equation to describe adipocyte size distribution. The model includes a description of the lipid fluxes and the cell size fluctuations and using a formulation of a stationary solution fast computation of bimodal distribution is achieved. We investigate the parameter identifiability and estimate parameter values with CMA-ES algorithm. We first validate the procedure on synthetic data, then we estimate parameter values with experimental data of 32 rats. We discuss the estimated parameter values and their variability within the population, as well as the relation between estimated values and their biological significance. Finally, a sensitivity analysis is performed to specify the influence of parameters on cell size distribution and explain the differences between the model and the measurements. The proposed framework enables the characterization of adipocyte size distribution with four parameters and can be easily adapted to measurements of cell size distribution in different health conditions.
doi_str_mv 10.1016/j.jtbi.2024.111747
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04667836v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04667836v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_04667836v13</originalsourceid><addsrcrecordid>eNqVjMFKxDAURYMoWB1_wNXbumhN2rSduhNRRtDd7MvrJHVeaZKSPIX69TrgD7i6cDjnCnGrZKGkau6nYuKBilKWulBKtbo9E5mSXZ1va63ORSZlWea16qpLcZXSJKXsdNVkwr0jH61DpgPO4IKxM_kPCCOgoSUcVraQ6NuCocSRhk-m4NMDvBrrmUbCgWbiFdAbWDCis2wj2MR0-gwexhgcRGQwyLgRFyPOyd787bW4e3neP-3yI879En-buPYBqd89vvUnJnXTtNuq-VLVf9wf6mNWOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mathematical modeling of adipocyte size distributions: Identifiability and parameter estimation from rat data</title><source>Access via ScienceDirect (Elsevier)</source><creator>Giacobbi, Anne-Sophie ; Meyer, Leo ; Ribot, Magali ; Yvinec, Romain ; Soula, Hedi ; Audebert, Chloe</creator><creatorcontrib>Giacobbi, Anne-Sophie ; Meyer, Leo ; Ribot, Magali ; Yvinec, Romain ; Soula, Hedi ; Audebert, Chloe</creatorcontrib><description>Fat cells, called adipocytes, are designed to regulate energy homeostasis by storing energy in the form of lipids. Adipocyte size distribution is assumed to play a role in the development of obesity-related diseases. These cells that do not have a characteristic size, indeed a bimodal size distribution is observed in adipose tissue. We propose a model based on a partial differential equation to describe adipocyte size distribution. The model includes a description of the lipid fluxes and the cell size fluctuations and using a formulation of a stationary solution fast computation of bimodal distribution is achieved. We investigate the parameter identifiability and estimate parameter values with CMA-ES algorithm. We first validate the procedure on synthetic data, then we estimate parameter values with experimental data of 32 rats. We discuss the estimated parameter values and their variability within the population, as well as the relation between estimated values and their biological significance. Finally, a sensitivity analysis is performed to specify the influence of parameters on cell size distribution and explain the differences between the model and the measurements. The proposed framework enables the characterization of adipocyte size distribution with four parameters and can be easily adapted to measurements of cell size distribution in different health conditions.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2024.111747</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Life Sciences</subject><ispartof>Journal of theoretical biology, 2024-03, Vol.581</ispartof><rights>Attribution</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3876-1369 ; 0000-0002-7020-3976 ; 0000-0001-5306-9712 ; 0009-0002-0318-6448 ; 0009-0002-0318-6448 ; 0000-0001-5306-9712 ; 0000-0002-7020-3976 ; 0000-0003-3876-1369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-04667836$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Giacobbi, Anne-Sophie</creatorcontrib><creatorcontrib>Meyer, Leo</creatorcontrib><creatorcontrib>Ribot, Magali</creatorcontrib><creatorcontrib>Yvinec, Romain</creatorcontrib><creatorcontrib>Soula, Hedi</creatorcontrib><creatorcontrib>Audebert, Chloe</creatorcontrib><title>Mathematical modeling of adipocyte size distributions: Identifiability and parameter estimation from rat data</title><title>Journal of theoretical biology</title><description>Fat cells, called adipocytes, are designed to regulate energy homeostasis by storing energy in the form of lipids. Adipocyte size distribution is assumed to play a role in the development of obesity-related diseases. These cells that do not have a characteristic size, indeed a bimodal size distribution is observed in adipose tissue. We propose a model based on a partial differential equation to describe adipocyte size distribution. The model includes a description of the lipid fluxes and the cell size fluctuations and using a formulation of a stationary solution fast computation of bimodal distribution is achieved. We investigate the parameter identifiability and estimate parameter values with CMA-ES algorithm. We first validate the procedure on synthetic data, then we estimate parameter values with experimental data of 32 rats. We discuss the estimated parameter values and their variability within the population, as well as the relation between estimated values and their biological significance. Finally, a sensitivity analysis is performed to specify the influence of parameters on cell size distribution and explain the differences between the model and the measurements. The proposed framework enables the characterization of adipocyte size distribution with four parameters and can be easily adapted to measurements of cell size distribution in different health conditions.</description><subject>Life Sciences</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVjMFKxDAURYMoWB1_wNXbumhN2rSduhNRRtDd7MvrJHVeaZKSPIX69TrgD7i6cDjnCnGrZKGkau6nYuKBilKWulBKtbo9E5mSXZ1va63ORSZlWea16qpLcZXSJKXsdNVkwr0jH61DpgPO4IKxM_kPCCOgoSUcVraQ6NuCocSRhk-m4NMDvBrrmUbCgWbiFdAbWDCis2wj2MR0-gwexhgcRGQwyLgRFyPOyd787bW4e3neP-3yI879En-buPYBqd89vvUnJnXTtNuq-VLVf9wf6mNWOw</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Giacobbi, Anne-Sophie</creator><creator>Meyer, Leo</creator><creator>Ribot, Magali</creator><creator>Yvinec, Romain</creator><creator>Soula, Hedi</creator><creator>Audebert, Chloe</creator><general>Elsevier</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3876-1369</orcidid><orcidid>https://orcid.org/0000-0002-7020-3976</orcidid><orcidid>https://orcid.org/0000-0001-5306-9712</orcidid><orcidid>https://orcid.org/0009-0002-0318-6448</orcidid><orcidid>https://orcid.org/0009-0002-0318-6448</orcidid><orcidid>https://orcid.org/0000-0001-5306-9712</orcidid><orcidid>https://orcid.org/0000-0002-7020-3976</orcidid><orcidid>https://orcid.org/0000-0003-3876-1369</orcidid></search><sort><creationdate>202403</creationdate><title>Mathematical modeling of adipocyte size distributions: Identifiability and parameter estimation from rat data</title><author>Giacobbi, Anne-Sophie ; Meyer, Leo ; Ribot, Magali ; Yvinec, Romain ; Soula, Hedi ; Audebert, Chloe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_04667836v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Life Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giacobbi, Anne-Sophie</creatorcontrib><creatorcontrib>Meyer, Leo</creatorcontrib><creatorcontrib>Ribot, Magali</creatorcontrib><creatorcontrib>Yvinec, Romain</creatorcontrib><creatorcontrib>Soula, Hedi</creatorcontrib><creatorcontrib>Audebert, Chloe</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giacobbi, Anne-Sophie</au><au>Meyer, Leo</au><au>Ribot, Magali</au><au>Yvinec, Romain</au><au>Soula, Hedi</au><au>Audebert, Chloe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical modeling of adipocyte size distributions: Identifiability and parameter estimation from rat data</atitle><jtitle>Journal of theoretical biology</jtitle><date>2024-03</date><risdate>2024</risdate><volume>581</volume><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>Fat cells, called adipocytes, are designed to regulate energy homeostasis by storing energy in the form of lipids. Adipocyte size distribution is assumed to play a role in the development of obesity-related diseases. These cells that do not have a characteristic size, indeed a bimodal size distribution is observed in adipose tissue. We propose a model based on a partial differential equation to describe adipocyte size distribution. The model includes a description of the lipid fluxes and the cell size fluctuations and using a formulation of a stationary solution fast computation of bimodal distribution is achieved. We investigate the parameter identifiability and estimate parameter values with CMA-ES algorithm. We first validate the procedure on synthetic data, then we estimate parameter values with experimental data of 32 rats. We discuss the estimated parameter values and their variability within the population, as well as the relation between estimated values and their biological significance. Finally, a sensitivity analysis is performed to specify the influence of parameters on cell size distribution and explain the differences between the model and the measurements. The proposed framework enables the characterization of adipocyte size distribution with four parameters and can be easily adapted to measurements of cell size distribution in different health conditions.</abstract><pub>Elsevier</pub><doi>10.1016/j.jtbi.2024.111747</doi><orcidid>https://orcid.org/0000-0003-3876-1369</orcidid><orcidid>https://orcid.org/0000-0002-7020-3976</orcidid><orcidid>https://orcid.org/0000-0001-5306-9712</orcidid><orcidid>https://orcid.org/0009-0002-0318-6448</orcidid><orcidid>https://orcid.org/0009-0002-0318-6448</orcidid><orcidid>https://orcid.org/0000-0001-5306-9712</orcidid><orcidid>https://orcid.org/0000-0002-7020-3976</orcidid><orcidid>https://orcid.org/0000-0003-3876-1369</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 2024-03, Vol.581
issn 0022-5193
1095-8541
language eng
recordid cdi_hal_primary_oai_HAL_hal_04667836v1
source Access via ScienceDirect (Elsevier)
subjects Life Sciences
title Mathematical modeling of adipocyte size distributions: Identifiability and parameter estimation from rat data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A22%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20modeling%20of%20adipocyte%20size%20distributions:%20Identifiability%20and%20parameter%20estimation%20from%20rat%20data&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Giacobbi,%20Anne-Sophie&rft.date=2024-03&rft.volume=581&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2024.111747&rft_dat=%3Chal%3Eoai_HAL_hal_04667836v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true