γ-Observable neighbours for vector quantization
We define the γ-observable neighbourhood and use it in soft-competitive learning for vector quantization. Considering a datum v and a set of n units w i in a Euclidean space, let v i be a point of the segment [ vw i ] whose position depends on γ a real number between 0 and 1, the γ-observable neighb...
Gespeichert in:
Veröffentlicht in: | Neural networks 2002-10, Vol.15 (8), p.1017-1027 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1027 |
---|---|
container_issue | 8 |
container_start_page | 1017 |
container_title | Neural networks |
container_volume | 15 |
creator | Aupetit, Michaël Couturier, Pierre Massotte, Pierre |
description | We define the
γ-observable neighbourhood and use it in soft-competitive learning for vector quantization. Considering a datum
v and a set of
n units
w
i
in a Euclidean space, let
v
i
be a point of the segment [
vw
i
] whose position depends on
γ a real number between 0 and 1, the
γ-observable neighbours (
γ-ON) of
v are the units
w
i
for which
v
i
is in the Voronoı̈ of
w
i
, i.e.
w
i
is the closest unit to
v
i
. For
γ=1,
v
i
merges with
w
i
, all the units are
γ-ON of
v, while for
γ=0,
v
i
merges with
v, only the closest unit to
v is its
γ-ON. The size of the neighbourhood decreases from
n to 1 while
γ goes from 1 to 0. For
γ lower or equal to 0.5, the
γ-ON of
v are also its natural neighbours, i.e. their Voronoı̈ regions share a common boundary with that of
v. We show that this neighbourhood used in Vector Quantization gives faster convergence in terms of number of epochs and similar distortion than the Neural-Gas on several benchmark databases, and we propose the fact that it does not have the dimension selection property could explain these results. We show it also presents a new self-organization property we call ‘self-distribution’. |
doi_str_mv | 10.1016/S0893-6080(02)00076-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04665435v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089360800200076X</els_id><sourcerecordid>72662205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-762953fde4f2641e3932df94a8dc2ee33ce6584021a4e2ce2af7f140b78765873</originalsourceid><addsrcrecordid>eNqFkMtKw0AUhgdRbK0-gtKV2EV0bplJVlKKWqHQhQrdDZPJiR1Jk3YmKehr-R4-k9MLdenqh3O-c374ELok-JZgIu5ecJKySOAE32A6wBhLEc2OUJckMo2oTOgx6h6QDjrz_iNAIuHsFHUI5USIlHQR_vmOppkHt9ZZCf0K7Ps8q1vn-0Xt-mswTYhVq6vGfunG1tU5Oil06eFinz309vjwOhpHk-nT82g4iQynvImkoGnMihx4QQUnwFJG8yLlOskNBWDMgIgTjinRHKgBqgtZEI4zmciwkKyHBru_c12qpbML7T5Vra0aDydqM8NciJizeE0Ce71jl65eteAbtbDeQFnqCurWK0mFoBTHAYx3oHG19w6Kw2eC1Uar2mpVG2cKU7XVqmbh7mpf0GYLyP-u9h4DcL8DIChZW3DKGwuVgdy64FDltf2n4heNEYZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72662205</pqid></control><display><type>article</type><title>γ-Observable neighbours for vector quantization</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Aupetit, Michaël ; Couturier, Pierre ; Massotte, Pierre</creator><creatorcontrib>Aupetit, Michaël ; Couturier, Pierre ; Massotte, Pierre</creatorcontrib><description>We define the
γ-observable neighbourhood and use it in soft-competitive learning for vector quantization. Considering a datum
v and a set of
n units
w
i
in a Euclidean space, let
v
i
be a point of the segment [
vw
i
] whose position depends on
γ a real number between 0 and 1, the
γ-observable neighbours (
γ-ON) of
v are the units
w
i
for which
v
i
is in the Voronoı̈ of
w
i
, i.e.
w
i
is the closest unit to
v
i
. For
γ=1,
v
i
merges with
w
i
, all the units are
γ-ON of
v, while for
γ=0,
v
i
merges with
v, only the closest unit to
v is its
γ-ON. The size of the neighbourhood decreases from
n to 1 while
γ goes from 1 to 0. For
γ lower or equal to 0.5, the
γ-ON of
v are also its natural neighbours, i.e. their Voronoı̈ regions share a common boundary with that of
v. We show that this neighbourhood used in Vector Quantization gives faster convergence in terms of number of epochs and similar distortion than the Neural-Gas on several benchmark databases, and we propose the fact that it does not have the dimension selection property could explain these results. We show it also presents a new self-organization property we call ‘self-distribution’.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/S0893-6080(02)00076-X</identifier><identifier>PMID: 12416691</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Computer Science ; Dimension selection ; Natural neighbours ; Neural Networks (Computer) ; Neural-gas ; Self-distribution ; Self-organizing maps ; Vector quantization ; γ-Observable neighbours</subject><ispartof>Neural networks, 2002-10, Vol.15 (8), p.1017-1027</ispartof><rights>2002 Elsevier Science Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-762953fde4f2641e3932df94a8dc2ee33ce6584021a4e2ce2af7f140b78765873</citedby><cites>FETCH-LOGICAL-c424t-762953fde4f2641e3932df94a8dc2ee33ce6584021a4e2ce2af7f140b78765873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0893-6080(02)00076-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12416691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://imt-mines-ales.hal.science/hal-04665435$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aupetit, Michaël</creatorcontrib><creatorcontrib>Couturier, Pierre</creatorcontrib><creatorcontrib>Massotte, Pierre</creatorcontrib><title>γ-Observable neighbours for vector quantization</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>We define the
γ-observable neighbourhood and use it in soft-competitive learning for vector quantization. Considering a datum
v and a set of
n units
w
i
in a Euclidean space, let
v
i
be a point of the segment [
vw
i
] whose position depends on
γ a real number between 0 and 1, the
γ-observable neighbours (
γ-ON) of
v are the units
w
i
for which
v
i
is in the Voronoı̈ of
w
i
, i.e.
w
i
is the closest unit to
v
i
. For
γ=1,
v
i
merges with
w
i
, all the units are
γ-ON of
v, while for
γ=0,
v
i
merges with
v, only the closest unit to
v is its
γ-ON. The size of the neighbourhood decreases from
n to 1 while
γ goes from 1 to 0. For
γ lower or equal to 0.5, the
γ-ON of
v are also its natural neighbours, i.e. their Voronoı̈ regions share a common boundary with that of
v. We show that this neighbourhood used in Vector Quantization gives faster convergence in terms of number of epochs and similar distortion than the Neural-Gas on several benchmark databases, and we propose the fact that it does not have the dimension selection property could explain these results. We show it also presents a new self-organization property we call ‘self-distribution’.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Dimension selection</subject><subject>Natural neighbours</subject><subject>Neural Networks (Computer)</subject><subject>Neural-gas</subject><subject>Self-distribution</subject><subject>Self-organizing maps</subject><subject>Vector quantization</subject><subject>γ-Observable neighbours</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtKw0AUhgdRbK0-gtKV2EV0bplJVlKKWqHQhQrdDZPJiR1Jk3YmKehr-R4-k9MLdenqh3O-c374ELok-JZgIu5ecJKySOAE32A6wBhLEc2OUJckMo2oTOgx6h6QDjrz_iNAIuHsFHUI5USIlHQR_vmOppkHt9ZZCf0K7Ps8q1vn-0Xt-mswTYhVq6vGfunG1tU5Oil06eFinz309vjwOhpHk-nT82g4iQynvImkoGnMihx4QQUnwFJG8yLlOskNBWDMgIgTjinRHKgBqgtZEI4zmciwkKyHBru_c12qpbML7T5Vra0aDydqM8NciJizeE0Ce71jl65eteAbtbDeQFnqCurWK0mFoBTHAYx3oHG19w6Kw2eC1Uar2mpVG2cKU7XVqmbh7mpf0GYLyP-u9h4DcL8DIChZW3DKGwuVgdy64FDltf2n4heNEYZg</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>Aupetit, Michaël</creator><creator>Couturier, Pierre</creator><creator>Massotte, Pierre</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>20021001</creationdate><title>γ-Observable neighbours for vector quantization</title><author>Aupetit, Michaël ; Couturier, Pierre ; Massotte, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-762953fde4f2641e3932df94a8dc2ee33ce6584021a4e2ce2af7f140b78765873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Dimension selection</topic><topic>Natural neighbours</topic><topic>Neural Networks (Computer)</topic><topic>Neural-gas</topic><topic>Self-distribution</topic><topic>Self-organizing maps</topic><topic>Vector quantization</topic><topic>γ-Observable neighbours</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aupetit, Michaël</creatorcontrib><creatorcontrib>Couturier, Pierre</creatorcontrib><creatorcontrib>Massotte, Pierre</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aupetit, Michaël</au><au>Couturier, Pierre</au><au>Massotte, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>γ-Observable neighbours for vector quantization</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2002-10-01</date><risdate>2002</risdate><volume>15</volume><issue>8</issue><spage>1017</spage><epage>1027</epage><pages>1017-1027</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>We define the
γ-observable neighbourhood and use it in soft-competitive learning for vector quantization. Considering a datum
v and a set of
n units
w
i
in a Euclidean space, let
v
i
be a point of the segment [
vw
i
] whose position depends on
γ a real number between 0 and 1, the
γ-observable neighbours (
γ-ON) of
v are the units
w
i
for which
v
i
is in the Voronoı̈ of
w
i
, i.e.
w
i
is the closest unit to
v
i
. For
γ=1,
v
i
merges with
w
i
, all the units are
γ-ON of
v, while for
γ=0,
v
i
merges with
v, only the closest unit to
v is its
γ-ON. The size of the neighbourhood decreases from
n to 1 while
γ goes from 1 to 0. For
γ lower or equal to 0.5, the
γ-ON of
v are also its natural neighbours, i.e. their Voronoı̈ regions share a common boundary with that of
v. We show that this neighbourhood used in Vector Quantization gives faster convergence in terms of number of epochs and similar distortion than the Neural-Gas on several benchmark databases, and we propose the fact that it does not have the dimension selection property could explain these results. We show it also presents a new self-organization property we call ‘self-distribution’.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>12416691</pmid><doi>10.1016/S0893-6080(02)00076-X</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2002-10, Vol.15 (8), p.1017-1027 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04665435v1 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Algorithms Computer Science Dimension selection Natural neighbours Neural Networks (Computer) Neural-gas Self-distribution Self-organizing maps Vector quantization γ-Observable neighbours |
title | γ-Observable neighbours for vector quantization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A10%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%B3-Observable%20neighbours%20for%20vector%20quantization&rft.jtitle=Neural%20networks&rft.au=Aupetit,%20Micha%C3%ABl&rft.date=2002-10-01&rft.volume=15&rft.issue=8&rft.spage=1017&rft.epage=1027&rft.pages=1017-1027&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/S0893-6080(02)00076-X&rft_dat=%3Cproquest_hal_p%3E72662205%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72662205&rft_id=info:pmid/12416691&rft_els_id=S089360800200076X&rfr_iscdi=true |