Amorphization and Ablation of Crystalline Silicon Using Ultrafast Lasers: Dependencies on the Pulse Duration and Irradiation Wavelength
Using lasers to achieve controlled crystallographic phase changes in silicon with high spatial precision promises new manufacturing solutions in semiconductor technologies, including silicon photonics. Recent demonstrations of improved amorphization thicknesses position ultrafast lasers as an optimu...
Gespeichert in:
Veröffentlicht in: | Laser & photonics reviews 2024-11, Vol.18 (11), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Laser & photonics reviews |
container_volume | 18 |
creator | Garcia‐Lechuga, Mario Casquero, Noemi Siegel, Jan Solis, Javier Clady, Raphael Wang, Andong Utéza, Olivier Grojo, David |
description | Using lasers to achieve controlled crystallographic phase changes in silicon with high spatial precision promises new manufacturing solutions in semiconductor technologies, including silicon photonics. Recent demonstrations of improved amorphization thicknesses position ultrafast lasers as an optimum tool to meet current challenges. Here, the literature on silicon transformations is reviewed and complemented with new experimental data. This includes amorphization and ablation response as a function of pulse duration (τ = 13.9 to 134 fs at λ = 800 nm) and laser wavelength (λ = 258 to 4000 nm with τ = 200 fs pulses). For pulse duration‐dependent studies on Si(111), the amorphization fluence threshold decreases with shorter durations, emphasizing the significance of non‐linear absorption in the range of considered conditions. For wavelength‐dependent studies, the amorphization threshold increases sharply from λ = 258 to 1030 nm, followed by near‐constant behavior up to λ = 3000 nm. Conversely, the ablation threshold fluence increases in these specified ranges. Differences in the obtained amorphization thicknesses on Si(111) and Si(100) are also discussed, identifying an anomalously large fluence range for amorphization at λ = 258 nm. Finally, the question of the lateral resolution, shown as independent of the interaction nonlinearity is addressed.
This study investigates the limits of silicon amorphization using ultrashort laser pulses. It explores fluence ranges for ablation and amorphization, optimizing amorphization thickness, and aspects related to spatial resolution control. Thoroughly examined pulse duration (from 13.9 to 134 fs) and laser wavelength (from 258 to 4000 nm) effects reveal fluence thresholds and maximum amorphization depths. Results can inform theoretical models and advance femtosecond laser strategies in silicon photonics and semiconductor technologies. |
doi_str_mv | 10.1002/lpor.202301327 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04662721v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126638908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2367-56f4b566c37aa046cdae17883113fb9431ef223c7ac329fc975228e4bebf43693</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhQdR8Ll1HXDlojWPaSbjrtRHCwMtanEZMulNmxJnxmSq1D_g3zZlpC69m_vgO4cLJ0kuCe4TjOmNa2rfp5gyTBjNDpITIjjrCZHnh_tZ4OPkNIQ1xoNY_CT5Hr7VvlnZL9XaukKqWqBh6bqlNmjkt6FVztkK0LN1VsfzPNhqieau9cqo0KJCBfDhFt1BA9UCKm0hoMi1K0CzjQuA7jb-z37ivVrYbn9VH-CgWrar8-TIqMhe_PazZP5w_zIa94rp42Q0LHqaMp71Btyk5YBzzTKlcMr1QgHJhGCEMFPmKSNgKGU6U5rR3Og8G1AqIC2hNCnjOTtLrjvflXKy8fZN-a2slZXjYSF3t2jKaUbJB4nsVcc2vn7fQGjlut74Kr4nGaGcM5FjEal-R2lfh-DB7G0Jlrtg5C4YuQ8mCvJO8GkdbP-hZTGbPv1pfwCvPpNY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126638908</pqid></control><display><type>article</type><title>Amorphization and Ablation of Crystalline Silicon Using Ultrafast Lasers: Dependencies on the Pulse Duration and Irradiation Wavelength</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Garcia‐Lechuga, Mario ; Casquero, Noemi ; Siegel, Jan ; Solis, Javier ; Clady, Raphael ; Wang, Andong ; Utéza, Olivier ; Grojo, David</creator><creatorcontrib>Garcia‐Lechuga, Mario ; Casquero, Noemi ; Siegel, Jan ; Solis, Javier ; Clady, Raphael ; Wang, Andong ; Utéza, Olivier ; Grojo, David</creatorcontrib><description>Using lasers to achieve controlled crystallographic phase changes in silicon with high spatial precision promises new manufacturing solutions in semiconductor technologies, including silicon photonics. Recent demonstrations of improved amorphization thicknesses position ultrafast lasers as an optimum tool to meet current challenges. Here, the literature on silicon transformations is reviewed and complemented with new experimental data. This includes amorphization and ablation response as a function of pulse duration (τ = 13.9 to 134 fs at λ = 800 nm) and laser wavelength (λ = 258 to 4000 nm with τ = 200 fs pulses). For pulse duration‐dependent studies on Si(111), the amorphization fluence threshold decreases with shorter durations, emphasizing the significance of non‐linear absorption in the range of considered conditions. For wavelength‐dependent studies, the amorphization threshold increases sharply from λ = 258 to 1030 nm, followed by near‐constant behavior up to λ = 3000 nm. Conversely, the ablation threshold fluence increases in these specified ranges. Differences in the obtained amorphization thicknesses on Si(111) and Si(100) are also discussed, identifying an anomalously large fluence range for amorphization at λ = 258 nm. Finally, the question of the lateral resolution, shown as independent of the interaction nonlinearity is addressed.
This study investigates the limits of silicon amorphization using ultrashort laser pulses. It explores fluence ranges for ablation and amorphization, optimizing amorphization thickness, and aspects related to spatial resolution control. Thoroughly examined pulse duration (from 13.9 to 134 fs) and laser wavelength (from 258 to 4000 nm) effects reveal fluence thresholds and maximum amorphization depths. Results can inform theoretical models and advance femtosecond laser strategies in silicon photonics and semiconductor technologies.</description><identifier>ISSN: 1863-8880</identifier><identifier>EISSN: 1863-8899</identifier><identifier>DOI: 10.1002/lpor.202301327</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Ablation ; Amorphization ; Crystallography ; femtosecond laser‐matter interactions ; few‐optical‐cycle pulses ; Fluence ; Lasers ; Physics ; Pulse duration ; Silicon ; silicon amorphization ; Silicon photonics ; Thickness ; Ultrafast lasers ; wavelength tunable lasers</subject><ispartof>Laser & photonics reviews, 2024-11, Vol.18 (11), p.n/a</ispartof><rights>2024 The Author(s). Laser & Photonics Reviews published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2367-56f4b566c37aa046cdae17883113fb9431ef223c7ac329fc975228e4bebf43693</cites><orcidid>0000-0002-9642-2982 ; 0000-0002-8189-3781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Flpor.202301327$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Flpor.202301327$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04662721$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia‐Lechuga, Mario</creatorcontrib><creatorcontrib>Casquero, Noemi</creatorcontrib><creatorcontrib>Siegel, Jan</creatorcontrib><creatorcontrib>Solis, Javier</creatorcontrib><creatorcontrib>Clady, Raphael</creatorcontrib><creatorcontrib>Wang, Andong</creatorcontrib><creatorcontrib>Utéza, Olivier</creatorcontrib><creatorcontrib>Grojo, David</creatorcontrib><title>Amorphization and Ablation of Crystalline Silicon Using Ultrafast Lasers: Dependencies on the Pulse Duration and Irradiation Wavelength</title><title>Laser & photonics reviews</title><description>Using lasers to achieve controlled crystallographic phase changes in silicon with high spatial precision promises new manufacturing solutions in semiconductor technologies, including silicon photonics. Recent demonstrations of improved amorphization thicknesses position ultrafast lasers as an optimum tool to meet current challenges. Here, the literature on silicon transformations is reviewed and complemented with new experimental data. This includes amorphization and ablation response as a function of pulse duration (τ = 13.9 to 134 fs at λ = 800 nm) and laser wavelength (λ = 258 to 4000 nm with τ = 200 fs pulses). For pulse duration‐dependent studies on Si(111), the amorphization fluence threshold decreases with shorter durations, emphasizing the significance of non‐linear absorption in the range of considered conditions. For wavelength‐dependent studies, the amorphization threshold increases sharply from λ = 258 to 1030 nm, followed by near‐constant behavior up to λ = 3000 nm. Conversely, the ablation threshold fluence increases in these specified ranges. Differences in the obtained amorphization thicknesses on Si(111) and Si(100) are also discussed, identifying an anomalously large fluence range for amorphization at λ = 258 nm. Finally, the question of the lateral resolution, shown as independent of the interaction nonlinearity is addressed.
This study investigates the limits of silicon amorphization using ultrashort laser pulses. It explores fluence ranges for ablation and amorphization, optimizing amorphization thickness, and aspects related to spatial resolution control. Thoroughly examined pulse duration (from 13.9 to 134 fs) and laser wavelength (from 258 to 4000 nm) effects reveal fluence thresholds and maximum amorphization depths. Results can inform theoretical models and advance femtosecond laser strategies in silicon photonics and semiconductor technologies.</description><subject>Ablation</subject><subject>Amorphization</subject><subject>Crystallography</subject><subject>femtosecond laser‐matter interactions</subject><subject>few‐optical‐cycle pulses</subject><subject>Fluence</subject><subject>Lasers</subject><subject>Physics</subject><subject>Pulse duration</subject><subject>Silicon</subject><subject>silicon amorphization</subject><subject>Silicon photonics</subject><subject>Thickness</subject><subject>Ultrafast lasers</subject><subject>wavelength tunable lasers</subject><issn>1863-8880</issn><issn>1863-8899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkUtLAzEUhQdR8Ll1HXDlojWPaSbjrtRHCwMtanEZMulNmxJnxmSq1D_g3zZlpC69m_vgO4cLJ0kuCe4TjOmNa2rfp5gyTBjNDpITIjjrCZHnh_tZ4OPkNIQ1xoNY_CT5Hr7VvlnZL9XaukKqWqBh6bqlNmjkt6FVztkK0LN1VsfzPNhqieau9cqo0KJCBfDhFt1BA9UCKm0hoMi1K0CzjQuA7jb-z37ivVrYbn9VH-CgWrar8-TIqMhe_PazZP5w_zIa94rp42Q0LHqaMp71Btyk5YBzzTKlcMr1QgHJhGCEMFPmKSNgKGU6U5rR3Og8G1AqIC2hNCnjOTtLrjvflXKy8fZN-a2slZXjYSF3t2jKaUbJB4nsVcc2vn7fQGjlut74Kr4nGaGcM5FjEal-R2lfh-DB7G0Jlrtg5C4YuQ8mCvJO8GkdbP-hZTGbPv1pfwCvPpNY</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Garcia‐Lechuga, Mario</creator><creator>Casquero, Noemi</creator><creator>Siegel, Jan</creator><creator>Solis, Javier</creator><creator>Clady, Raphael</creator><creator>Wang, Andong</creator><creator>Utéza, Olivier</creator><creator>Grojo, David</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9642-2982</orcidid><orcidid>https://orcid.org/0000-0002-8189-3781</orcidid></search><sort><creationdate>202411</creationdate><title>Amorphization and Ablation of Crystalline Silicon Using Ultrafast Lasers: Dependencies on the Pulse Duration and Irradiation Wavelength</title><author>Garcia‐Lechuga, Mario ; Casquero, Noemi ; Siegel, Jan ; Solis, Javier ; Clady, Raphael ; Wang, Andong ; Utéza, Olivier ; Grojo, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2367-56f4b566c37aa046cdae17883113fb9431ef223c7ac329fc975228e4bebf43693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Amorphization</topic><topic>Crystallography</topic><topic>femtosecond laser‐matter interactions</topic><topic>few‐optical‐cycle pulses</topic><topic>Fluence</topic><topic>Lasers</topic><topic>Physics</topic><topic>Pulse duration</topic><topic>Silicon</topic><topic>silicon amorphization</topic><topic>Silicon photonics</topic><topic>Thickness</topic><topic>Ultrafast lasers</topic><topic>wavelength tunable lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia‐Lechuga, Mario</creatorcontrib><creatorcontrib>Casquero, Noemi</creatorcontrib><creatorcontrib>Siegel, Jan</creatorcontrib><creatorcontrib>Solis, Javier</creatorcontrib><creatorcontrib>Clady, Raphael</creatorcontrib><creatorcontrib>Wang, Andong</creatorcontrib><creatorcontrib>Utéza, Olivier</creatorcontrib><creatorcontrib>Grojo, David</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Laser & photonics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia‐Lechuga, Mario</au><au>Casquero, Noemi</au><au>Siegel, Jan</au><au>Solis, Javier</au><au>Clady, Raphael</au><au>Wang, Andong</au><au>Utéza, Olivier</au><au>Grojo, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amorphization and Ablation of Crystalline Silicon Using Ultrafast Lasers: Dependencies on the Pulse Duration and Irradiation Wavelength</atitle><jtitle>Laser & photonics reviews</jtitle><date>2024-11</date><risdate>2024</risdate><volume>18</volume><issue>11</issue><epage>n/a</epage><issn>1863-8880</issn><eissn>1863-8899</eissn><abstract>Using lasers to achieve controlled crystallographic phase changes in silicon with high spatial precision promises new manufacturing solutions in semiconductor technologies, including silicon photonics. Recent demonstrations of improved amorphization thicknesses position ultrafast lasers as an optimum tool to meet current challenges. Here, the literature on silicon transformations is reviewed and complemented with new experimental data. This includes amorphization and ablation response as a function of pulse duration (τ = 13.9 to 134 fs at λ = 800 nm) and laser wavelength (λ = 258 to 4000 nm with τ = 200 fs pulses). For pulse duration‐dependent studies on Si(111), the amorphization fluence threshold decreases with shorter durations, emphasizing the significance of non‐linear absorption in the range of considered conditions. For wavelength‐dependent studies, the amorphization threshold increases sharply from λ = 258 to 1030 nm, followed by near‐constant behavior up to λ = 3000 nm. Conversely, the ablation threshold fluence increases in these specified ranges. Differences in the obtained amorphization thicknesses on Si(111) and Si(100) are also discussed, identifying an anomalously large fluence range for amorphization at λ = 258 nm. Finally, the question of the lateral resolution, shown as independent of the interaction nonlinearity is addressed.
This study investigates the limits of silicon amorphization using ultrashort laser pulses. It explores fluence ranges for ablation and amorphization, optimizing amorphization thickness, and aspects related to spatial resolution control. Thoroughly examined pulse duration (from 13.9 to 134 fs) and laser wavelength (from 258 to 4000 nm) effects reveal fluence thresholds and maximum amorphization depths. Results can inform theoretical models and advance femtosecond laser strategies in silicon photonics and semiconductor technologies.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/lpor.202301327</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9642-2982</orcidid><orcidid>https://orcid.org/0000-0002-8189-3781</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-8880 |
ispartof | Laser & photonics reviews, 2024-11, Vol.18 (11), p.n/a |
issn | 1863-8880 1863-8899 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04662721v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Ablation Amorphization Crystallography femtosecond laser‐matter interactions few‐optical‐cycle pulses Fluence Lasers Physics Pulse duration Silicon silicon amorphization Silicon photonics Thickness Ultrafast lasers wavelength tunable lasers |
title | Amorphization and Ablation of Crystalline Silicon Using Ultrafast Lasers: Dependencies on the Pulse Duration and Irradiation Wavelength |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A38%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amorphization%20and%20Ablation%20of%20Crystalline%20Silicon%20Using%20Ultrafast%20Lasers:%20Dependencies%20on%20the%20Pulse%20Duration%20and%20Irradiation%20Wavelength&rft.jtitle=Laser%20&%20photonics%20reviews&rft.au=Garcia%E2%80%90Lechuga,%20Mario&rft.date=2024-11&rft.volume=18&rft.issue=11&rft.epage=n/a&rft.issn=1863-8880&rft.eissn=1863-8899&rft_id=info:doi/10.1002/lpor.202301327&rft_dat=%3Cproquest_hal_p%3E3126638908%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126638908&rft_id=info:pmid/&rfr_iscdi=true |