On optimal solutions to the firing squad synchronization problem

The one-dimensional firing squad synchronization problem (FSSP) is considered. The problem is to construct a generic automaton of a one dimensional cellular network made of a segment of n identical machines such that, if at the starting time (t identical with 1) all finite automata of the cellular n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 1996-11, Vol.168 (2), p.367-404
1. Verfasser: Mazoyer, Jacques
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 404
container_issue 2
container_start_page 367
container_title Theoretical computer science
container_volume 168
creator Mazoyer, Jacques
description The one-dimensional firing squad synchronization problem (FSSP) is considered. The problem is to construct a generic automaton of a one dimensional cellular network made of a segment of n identical machines such that, if at the starting time (t identical with 1) all finite automata of the cellular network are in a quiescent state L and no meaningful information is exchanged, the segment evolves in such a way that at the firing time t(n) all automata enter simultaneously and for the very first time into the firing state F. It is observed that if the notion of optimality in time is well defined for a solution to the FSSP, the notion of size is more complex.
doi_str_mv 10.1016/S0304-3975(96)00084-9
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04659354v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397596000849</els_id><sourcerecordid>26253055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-25f10b8581935dc24eadb5970f57ec49370344ca79c92e1046d4376f5d9ab7be3</originalsourceid><addsrcrecordid>eNqFkEFLwzAUx4MoOKcfQchJ3KGatEnTnFSGOmGwg3oOafrqIl2zJd1gfnrTVXb19ODx-_9474_QNSV3lND8_p1khCWZFPxW5hNCSMESeYJGtBAySVPJTtHoiJyjixC-I0S4yEfocdFit-7sSjc4uGbbWdcG3DncLQHX1tv2C4fNVlc47Fuz9K61P7qH8Nq7soHVJTqrdRPg6m-O0efL88d0lswXr2_Tp3liWMG7JOU1JWXBCyozXpmUga5KLgWpuQDDZCZIxpjRQhqZAiUsr1gm8ppXUpeihGyMJoN3qRu19vFgv1dOWzV7mqt-FyM8utmORvZmYOONmy2ETq1sMNA0ugW3DSrNU54RziPIB9B4F4KH-mimRPXdqkO3qi9OyVwdulUy5h6GHMSPdxa8CsZCa6CyHkynKmf_MfwCV6KACg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26253055</pqid></control><display><type>article</type><title>On optimal solutions to the firing squad synchronization problem</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mazoyer, Jacques</creator><creatorcontrib>Mazoyer, Jacques</creatorcontrib><description>The one-dimensional firing squad synchronization problem (FSSP) is considered. The problem is to construct a generic automaton of a one dimensional cellular network made of a segment of n identical machines such that, if at the starting time (t identical with 1) all finite automata of the cellular network are in a quiescent state L and no meaningful information is exchanged, the segment evolves in such a way that at the firing time t(n) all automata enter simultaneously and for the very first time into the firing state F. It is observed that if the notion of optimality in time is well defined for a solution to the FSSP, the notion of size is more complex.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/S0304-3975(96)00084-9</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computer Science</subject><ispartof>Theoretical computer science, 1996-11, Vol.168 (2), p.367-404</ispartof><rights>1996</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-25f10b8581935dc24eadb5970f57ec49370344ca79c92e1046d4376f5d9ab7be3</citedby><cites>FETCH-LOGICAL-c485t-25f10b8581935dc24eadb5970f57ec49370344ca79c92e1046d4376f5d9ab7be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0304-3975(96)00084-9$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04659354$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mazoyer, Jacques</creatorcontrib><title>On optimal solutions to the firing squad synchronization problem</title><title>Theoretical computer science</title><description>The one-dimensional firing squad synchronization problem (FSSP) is considered. The problem is to construct a generic automaton of a one dimensional cellular network made of a segment of n identical machines such that, if at the starting time (t identical with 1) all finite automata of the cellular network are in a quiescent state L and no meaningful information is exchanged, the segment evolves in such a way that at the firing time t(n) all automata enter simultaneously and for the very first time into the firing state F. It is observed that if the notion of optimality in time is well defined for a solution to the FSSP, the notion of size is more complex.</description><subject>Computer Science</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLwzAUx4MoOKcfQchJ3KGatEnTnFSGOmGwg3oOafrqIl2zJd1gfnrTVXb19ODx-_9474_QNSV3lND8_p1khCWZFPxW5hNCSMESeYJGtBAySVPJTtHoiJyjixC-I0S4yEfocdFit-7sSjc4uGbbWdcG3DncLQHX1tv2C4fNVlc47Fuz9K61P7qH8Nq7soHVJTqrdRPg6m-O0efL88d0lswXr2_Tp3liWMG7JOU1JWXBCyozXpmUga5KLgWpuQDDZCZIxpjRQhqZAiUsr1gm8ppXUpeihGyMJoN3qRu19vFgv1dOWzV7mqt-FyM8utmORvZmYOONmy2ETq1sMNA0ugW3DSrNU54RziPIB9B4F4KH-mimRPXdqkO3qi9OyVwdulUy5h6GHMSPdxa8CsZCa6CyHkynKmf_MfwCV6KACg</recordid><startdate>199611</startdate><enddate>199611</enddate><creator>Mazoyer, Jacques</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope></search><sort><creationdate>199611</creationdate><title>On optimal solutions to the firing squad synchronization problem</title><author>Mazoyer, Jacques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-25f10b8581935dc24eadb5970f57ec49370344ca79c92e1046d4376f5d9ab7be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazoyer, Jacques</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazoyer, Jacques</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On optimal solutions to the firing squad synchronization problem</atitle><jtitle>Theoretical computer science</jtitle><date>1996-11</date><risdate>1996</risdate><volume>168</volume><issue>2</issue><spage>367</spage><epage>404</epage><pages>367-404</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><abstract>The one-dimensional firing squad synchronization problem (FSSP) is considered. The problem is to construct a generic automaton of a one dimensional cellular network made of a segment of n identical machines such that, if at the starting time (t identical with 1) all finite automata of the cellular network are in a quiescent state L and no meaningful information is exchanged, the segment evolves in such a way that at the firing time t(n) all automata enter simultaneously and for the very first time into the firing state F. It is observed that if the notion of optimality in time is well defined for a solution to the FSSP, the notion of size is more complex.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0304-3975(96)00084-9</doi><tpages>38</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 1996-11, Vol.168 (2), p.367-404
issn 0304-3975
1879-2294
language eng
recordid cdi_hal_primary_oai_HAL_hal_04659354v1
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Computer Science
title On optimal solutions to the firing squad synchronization problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20optimal%20solutions%20to%20the%20firing%20squad%20synchronization%20problem&rft.jtitle=Theoretical%20computer%20science&rft.au=Mazoyer,%20Jacques&rft.date=1996-11&rft.volume=168&rft.issue=2&rft.spage=367&rft.epage=404&rft.pages=367-404&rft.issn=0304-3975&rft.eissn=1879-2294&rft_id=info:doi/10.1016/S0304-3975(96)00084-9&rft_dat=%3Cproquest_hal_p%3E26253055%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26253055&rft_id=info:pmid/&rft_els_id=S0304397596000849&rfr_iscdi=true