On optimal solutions to the firing squad synchronization problem
The one-dimensional firing squad synchronization problem (FSSP) is considered. The problem is to construct a generic automaton of a one dimensional cellular network made of a segment of n identical machines such that, if at the starting time (t identical with 1) all finite automata of the cellular n...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 1996-11, Vol.168 (2), p.367-404 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 404 |
---|---|
container_issue | 2 |
container_start_page | 367 |
container_title | Theoretical computer science |
container_volume | 168 |
creator | Mazoyer, Jacques |
description | The one-dimensional firing squad synchronization problem (FSSP) is considered. The problem is to construct a generic automaton of a one dimensional cellular network made of a segment of n identical machines such that, if at the starting time (t identical with 1) all finite automata of the cellular network are in a quiescent state L and no meaningful information is exchanged, the segment evolves in such a way that at the firing time t(n) all automata enter simultaneously and for the very first time into the firing state F. It is observed that if the notion of optimality in time is well defined for a solution to the FSSP, the notion of size is more complex. |
doi_str_mv | 10.1016/S0304-3975(96)00084-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04659354v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397596000849</els_id><sourcerecordid>26253055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-25f10b8581935dc24eadb5970f57ec49370344ca79c92e1046d4376f5d9ab7be3</originalsourceid><addsrcrecordid>eNqFkEFLwzAUx4MoOKcfQchJ3KGatEnTnFSGOmGwg3oOafrqIl2zJd1gfnrTVXb19ODx-_9474_QNSV3lND8_p1khCWZFPxW5hNCSMESeYJGtBAySVPJTtHoiJyjixC-I0S4yEfocdFit-7sSjc4uGbbWdcG3DncLQHX1tv2C4fNVlc47Fuz9K61P7qH8Nq7soHVJTqrdRPg6m-O0efL88d0lswXr2_Tp3liWMG7JOU1JWXBCyozXpmUga5KLgWpuQDDZCZIxpjRQhqZAiUsr1gm8ppXUpeihGyMJoN3qRu19vFgv1dOWzV7mqt-FyM8utmORvZmYOONmy2ETq1sMNA0ugW3DSrNU54RziPIB9B4F4KH-mimRPXdqkO3qi9OyVwdulUy5h6GHMSPdxa8CsZCa6CyHkynKmf_MfwCV6KACg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26253055</pqid></control><display><type>article</type><title>On optimal solutions to the firing squad synchronization problem</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mazoyer, Jacques</creator><creatorcontrib>Mazoyer, Jacques</creatorcontrib><description>The one-dimensional firing squad synchronization problem (FSSP) is considered. The problem is to construct a generic automaton of a one dimensional cellular network made of a segment of n identical machines such that, if at the starting time (t identical with 1) all finite automata of the cellular network are in a quiescent state L and no meaningful information is exchanged, the segment evolves in such a way that at the firing time t(n) all automata enter simultaneously and for the very first time into the firing state F. It is observed that if the notion of optimality in time is well defined for a solution to the FSSP, the notion of size is more complex.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/S0304-3975(96)00084-9</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computer Science</subject><ispartof>Theoretical computer science, 1996-11, Vol.168 (2), p.367-404</ispartof><rights>1996</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-25f10b8581935dc24eadb5970f57ec49370344ca79c92e1046d4376f5d9ab7be3</citedby><cites>FETCH-LOGICAL-c485t-25f10b8581935dc24eadb5970f57ec49370344ca79c92e1046d4376f5d9ab7be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0304-3975(96)00084-9$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04659354$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mazoyer, Jacques</creatorcontrib><title>On optimal solutions to the firing squad synchronization problem</title><title>Theoretical computer science</title><description>The one-dimensional firing squad synchronization problem (FSSP) is considered. The problem is to construct a generic automaton of a one dimensional cellular network made of a segment of n identical machines such that, if at the starting time (t identical with 1) all finite automata of the cellular network are in a quiescent state L and no meaningful information is exchanged, the segment evolves in such a way that at the firing time t(n) all automata enter simultaneously and for the very first time into the firing state F. It is observed that if the notion of optimality in time is well defined for a solution to the FSSP, the notion of size is more complex.</description><subject>Computer Science</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLwzAUx4MoOKcfQchJ3KGatEnTnFSGOmGwg3oOafrqIl2zJd1gfnrTVXb19ODx-_9474_QNSV3lND8_p1khCWZFPxW5hNCSMESeYJGtBAySVPJTtHoiJyjixC-I0S4yEfocdFit-7sSjc4uGbbWdcG3DncLQHX1tv2C4fNVlc47Fuz9K61P7qH8Nq7soHVJTqrdRPg6m-O0efL88d0lswXr2_Tp3liWMG7JOU1JWXBCyozXpmUga5KLgWpuQDDZCZIxpjRQhqZAiUsr1gm8ppXUpeihGyMJoN3qRu19vFgv1dOWzV7mqt-FyM8utmORvZmYOONmy2ETq1sMNA0ugW3DSrNU54RziPIB9B4F4KH-mimRPXdqkO3qi9OyVwdulUy5h6GHMSPdxa8CsZCa6CyHkynKmf_MfwCV6KACg</recordid><startdate>199611</startdate><enddate>199611</enddate><creator>Mazoyer, Jacques</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope></search><sort><creationdate>199611</creationdate><title>On optimal solutions to the firing squad synchronization problem</title><author>Mazoyer, Jacques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-25f10b8581935dc24eadb5970f57ec49370344ca79c92e1046d4376f5d9ab7be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazoyer, Jacques</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazoyer, Jacques</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On optimal solutions to the firing squad synchronization problem</atitle><jtitle>Theoretical computer science</jtitle><date>1996-11</date><risdate>1996</risdate><volume>168</volume><issue>2</issue><spage>367</spage><epage>404</epage><pages>367-404</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><abstract>The one-dimensional firing squad synchronization problem (FSSP) is considered. The problem is to construct a generic automaton of a one dimensional cellular network made of a segment of n identical machines such that, if at the starting time (t identical with 1) all finite automata of the cellular network are in a quiescent state L and no meaningful information is exchanged, the segment evolves in such a way that at the firing time t(n) all automata enter simultaneously and for the very first time into the firing state F. It is observed that if the notion of optimality in time is well defined for a solution to the FSSP, the notion of size is more complex.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0304-3975(96)00084-9</doi><tpages>38</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3975 |
ispartof | Theoretical computer science, 1996-11, Vol.168 (2), p.367-404 |
issn | 0304-3975 1879-2294 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04659354v1 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Computer Science |
title | On optimal solutions to the firing squad synchronization problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20optimal%20solutions%20to%20the%20firing%20squad%20synchronization%20problem&rft.jtitle=Theoretical%20computer%20science&rft.au=Mazoyer,%20Jacques&rft.date=1996-11&rft.volume=168&rft.issue=2&rft.spage=367&rft.epage=404&rft.pages=367-404&rft.issn=0304-3975&rft.eissn=1879-2294&rft_id=info:doi/10.1016/S0304-3975(96)00084-9&rft_dat=%3Cproquest_hal_p%3E26253055%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26253055&rft_id=info:pmid/&rft_els_id=S0304397596000849&rfr_iscdi=true |