Co-rotational 3D beam element using quaternion algebra to account for large rotations: Dynamic equilibrium and applications

This paper presents a new co-rotational beam element based on quaternion algebra as parametrization of large rotations for dynamic applications. The co-rotational framework is based on a decomposition of the kinematics into a rigid element frame (that follows the element) and its pure deformation. B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2024-10, Vol.302, p.112975, Article 112975
Hauptverfasser: Grange, Stéphane, Bertrand, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112975
container_title International journal of solids and structures
container_volume 302
creator Grange, Stéphane
Bertrand, David
description This paper presents a new co-rotational beam element based on quaternion algebra as parametrization of large rotations for dynamic applications. The co-rotational framework is based on a decomposition of the kinematics into a rigid element frame (that follows the element) and its pure deformation. Based on a previous work related to the static equilibrium, the proposed co-rotational element lies in the framework of the incremental formulations. The kinematic field description using quaternion algebra allows to calculate quaternion’s velocities and accelerations. Then, the dynamic equilibrium and the formulation of the internal mass matrix and gyroscopic terms are detailed. Seven numerical applications in dynamic conditions are presented and compared with literature results showing the response of the proposed element in terms of conservation of the energy and convergence. •Quaternion parametrization of large rotations in a dynamic co-rotational framework.•Dynamic operators are obtained using quaternion’s velocities and accelerations.•Linearization of the response to obtain a dynamic algorithmic tangent operator.•Seven distinct dynamic study cases are presented showing numerical capabilities.
doi_str_mv 10.1016/j.ijsolstr.2024.112975
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04655024v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768324003342</els_id><sourcerecordid>S0020768324003342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-d347b24191f4bc692c27f917850bfcb4217c34123a5cbd4a058e1f4d63ab406b3</originalsourceid><addsrcrecordid>eNqFkD1PwzAURTOARCn8BeSVIcVfSRomqhYoUiUWmK1nxymOnLi1nUoVf55UoaxMT7o690rvJMkdwTOCSf7QzEwTnA3RzyimfEYILYvsIplgTHFa5HN2lVyH0GCMOSvxJPleutS7CNG4DixiKyQ1tEhb3eouoj6Ybov2PUTtuwFBYLdaekDRIVDK9QNTO48s-K1G56HwiFbHDlqjkN73xhrpTd8i6CoEu501aqRukssabNC3v3eafL48fyzX6eb99W252KSKFiSmFeOFpJyUpOZS5SUd4rokxTzDslaSU1IoxgllkClZccDZXA9olTOQHOeSTZP7cfcLrNh504I_CgdGrBcbccowz7Ns0HUgA5uPrPIuBK_rvwLB4qRYNOKsWJwUi1HxUHwai3r45GC0F0EZ3SldGa9VFJUz_038AAcojGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Co-rotational 3D beam element using quaternion algebra to account for large rotations: Dynamic equilibrium and applications</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Grange, Stéphane ; Bertrand, David</creator><creatorcontrib>Grange, Stéphane ; Bertrand, David</creatorcontrib><description>This paper presents a new co-rotational beam element based on quaternion algebra as parametrization of large rotations for dynamic applications. The co-rotational framework is based on a decomposition of the kinematics into a rigid element frame (that follows the element) and its pure deformation. Based on a previous work related to the static equilibrium, the proposed co-rotational element lies in the framework of the incremental formulations. The kinematic field description using quaternion algebra allows to calculate quaternion’s velocities and accelerations. Then, the dynamic equilibrium and the formulation of the internal mass matrix and gyroscopic terms are detailed. Seven numerical applications in dynamic conditions are presented and compared with literature results showing the response of the proposed element in terms of conservation of the energy and convergence. •Quaternion parametrization of large rotations in a dynamic co-rotational framework.•Dynamic operators are obtained using quaternion’s velocities and accelerations.•Linearization of the response to obtain a dynamic algorithmic tangent operator.•Seven distinct dynamic study cases are presented showing numerical capabilities.</description><identifier>ISSN: 0020-7683</identifier><identifier>DOI: 10.1016/j.ijsolstr.2024.112975</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Beam finite element ; Civil Engineering ; Co-rotational framework ; Dynamic ; Dynamique, vibrations ; Engineering Sciences ; Gyroscopic terms ; Mass matrix ; Mechanics ; Quaternions ; Structural mechanics</subject><ispartof>International journal of solids and structures, 2024-10, Vol.302, p.112975, Article 112975</ispartof><rights>2024 The Author(s)</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c271t-d347b24191f4bc692c27f917850bfcb4217c34123a5cbd4a058e1f4d63ab406b3</cites><orcidid>0000-0002-7766-0483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijsolstr.2024.112975$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04655024$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Grange, Stéphane</creatorcontrib><creatorcontrib>Bertrand, David</creatorcontrib><title>Co-rotational 3D beam element using quaternion algebra to account for large rotations: Dynamic equilibrium and applications</title><title>International journal of solids and structures</title><description>This paper presents a new co-rotational beam element based on quaternion algebra as parametrization of large rotations for dynamic applications. The co-rotational framework is based on a decomposition of the kinematics into a rigid element frame (that follows the element) and its pure deformation. Based on a previous work related to the static equilibrium, the proposed co-rotational element lies in the framework of the incremental formulations. The kinematic field description using quaternion algebra allows to calculate quaternion’s velocities and accelerations. Then, the dynamic equilibrium and the formulation of the internal mass matrix and gyroscopic terms are detailed. Seven numerical applications in dynamic conditions are presented and compared with literature results showing the response of the proposed element in terms of conservation of the energy and convergence. •Quaternion parametrization of large rotations in a dynamic co-rotational framework.•Dynamic operators are obtained using quaternion’s velocities and accelerations.•Linearization of the response to obtain a dynamic algorithmic tangent operator.•Seven distinct dynamic study cases are presented showing numerical capabilities.</description><subject>Beam finite element</subject><subject>Civil Engineering</subject><subject>Co-rotational framework</subject><subject>Dynamic</subject><subject>Dynamique, vibrations</subject><subject>Engineering Sciences</subject><subject>Gyroscopic terms</subject><subject>Mass matrix</subject><subject>Mechanics</subject><subject>Quaternions</subject><subject>Structural mechanics</subject><issn>0020-7683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURTOARCn8BeSVIcVfSRomqhYoUiUWmK1nxymOnLi1nUoVf55UoaxMT7o690rvJMkdwTOCSf7QzEwTnA3RzyimfEYILYvsIplgTHFa5HN2lVyH0GCMOSvxJPleutS7CNG4DixiKyQ1tEhb3eouoj6Ybov2PUTtuwFBYLdaekDRIVDK9QNTO48s-K1G56HwiFbHDlqjkN73xhrpTd8i6CoEu501aqRukssabNC3v3eafL48fyzX6eb99W252KSKFiSmFeOFpJyUpOZS5SUd4rokxTzDslaSU1IoxgllkClZccDZXA9olTOQHOeSTZP7cfcLrNh504I_CgdGrBcbccowz7Ns0HUgA5uPrPIuBK_rvwLB4qRYNOKsWJwUi1HxUHwai3r45GC0F0EZ3SldGa9VFJUz_038AAcojGQ</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Grange, Stéphane</creator><creator>Bertrand, David</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7766-0483</orcidid></search><sort><creationdate>20241001</creationdate><title>Co-rotational 3D beam element using quaternion algebra to account for large rotations: Dynamic equilibrium and applications</title><author>Grange, Stéphane ; Bertrand, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-d347b24191f4bc692c27f917850bfcb4217c34123a5cbd4a058e1f4d63ab406b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Beam finite element</topic><topic>Civil Engineering</topic><topic>Co-rotational framework</topic><topic>Dynamic</topic><topic>Dynamique, vibrations</topic><topic>Engineering Sciences</topic><topic>Gyroscopic terms</topic><topic>Mass matrix</topic><topic>Mechanics</topic><topic>Quaternions</topic><topic>Structural mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grange, Stéphane</creatorcontrib><creatorcontrib>Bertrand, David</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grange, Stéphane</au><au>Bertrand, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co-rotational 3D beam element using quaternion algebra to account for large rotations: Dynamic equilibrium and applications</atitle><jtitle>International journal of solids and structures</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>302</volume><spage>112975</spage><pages>112975-</pages><artnum>112975</artnum><issn>0020-7683</issn><abstract>This paper presents a new co-rotational beam element based on quaternion algebra as parametrization of large rotations for dynamic applications. The co-rotational framework is based on a decomposition of the kinematics into a rigid element frame (that follows the element) and its pure deformation. Based on a previous work related to the static equilibrium, the proposed co-rotational element lies in the framework of the incremental formulations. The kinematic field description using quaternion algebra allows to calculate quaternion’s velocities and accelerations. Then, the dynamic equilibrium and the formulation of the internal mass matrix and gyroscopic terms are detailed. Seven numerical applications in dynamic conditions are presented and compared with literature results showing the response of the proposed element in terms of conservation of the energy and convergence. •Quaternion parametrization of large rotations in a dynamic co-rotational framework.•Dynamic operators are obtained using quaternion’s velocities and accelerations.•Linearization of the response to obtain a dynamic algorithmic tangent operator.•Seven distinct dynamic study cases are presented showing numerical capabilities.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2024.112975</doi><orcidid>https://orcid.org/0000-0002-7766-0483</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2024-10, Vol.302, p.112975, Article 112975
issn 0020-7683
language eng
recordid cdi_hal_primary_oai_HAL_hal_04655024v1
source Elsevier ScienceDirect Journals Complete
subjects Beam finite element
Civil Engineering
Co-rotational framework
Dynamic
Dynamique, vibrations
Engineering Sciences
Gyroscopic terms
Mass matrix
Mechanics
Quaternions
Structural mechanics
title Co-rotational 3D beam element using quaternion algebra to account for large rotations: Dynamic equilibrium and applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A52%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co-rotational%203D%20beam%20element%20using%20quaternion%20algebra%20to%20account%20for%20large%20rotations:%20Dynamic%20equilibrium%20and%20applications&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Grange,%20St%C3%A9phane&rft.date=2024-10-01&rft.volume=302&rft.spage=112975&rft.pages=112975-&rft.artnum=112975&rft.issn=0020-7683&rft_id=info:doi/10.1016/j.ijsolstr.2024.112975&rft_dat=%3Celsevier_hal_p%3ES0020768324003342%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0020768324003342&rfr_iscdi=true