Co-rotational 3D beam element using quaternion algebra to account for large rotations: Dynamic equilibrium and applications
This paper presents a new co-rotational beam element based on quaternion algebra as parametrization of large rotations for dynamic applications. The co-rotational framework is based on a decomposition of the kinematics into a rigid element frame (that follows the element) and its pure deformation. B...
Gespeichert in:
Veröffentlicht in: | International journal of solids and structures 2024-10, Vol.302, p.112975, Article 112975 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 112975 |
container_title | International journal of solids and structures |
container_volume | 302 |
creator | Grange, Stéphane Bertrand, David |
description | This paper presents a new co-rotational beam element based on quaternion algebra as parametrization of large rotations for dynamic applications. The co-rotational framework is based on a decomposition of the kinematics into a rigid element frame (that follows the element) and its pure deformation. Based on a previous work related to the static equilibrium, the proposed co-rotational element lies in the framework of the incremental formulations. The kinematic field description using quaternion algebra allows to calculate quaternion’s velocities and accelerations. Then, the dynamic equilibrium and the formulation of the internal mass matrix and gyroscopic terms are detailed.
Seven numerical applications in dynamic conditions are presented and compared with literature results showing the response of the proposed element in terms of conservation of the energy and convergence.
•Quaternion parametrization of large rotations in a dynamic co-rotational framework.•Dynamic operators are obtained using quaternion’s velocities and accelerations.•Linearization of the response to obtain a dynamic algorithmic tangent operator.•Seven distinct dynamic study cases are presented showing numerical capabilities. |
doi_str_mv | 10.1016/j.ijsolstr.2024.112975 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04655024v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768324003342</els_id><sourcerecordid>S0020768324003342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-d347b24191f4bc692c27f917850bfcb4217c34123a5cbd4a058e1f4d63ab406b3</originalsourceid><addsrcrecordid>eNqFkD1PwzAURTOARCn8BeSVIcVfSRomqhYoUiUWmK1nxymOnLi1nUoVf55UoaxMT7o690rvJMkdwTOCSf7QzEwTnA3RzyimfEYILYvsIplgTHFa5HN2lVyH0GCMOSvxJPleutS7CNG4DixiKyQ1tEhb3eouoj6Ybov2PUTtuwFBYLdaekDRIVDK9QNTO48s-K1G56HwiFbHDlqjkN73xhrpTd8i6CoEu501aqRukssabNC3v3eafL48fyzX6eb99W252KSKFiSmFeOFpJyUpOZS5SUd4rokxTzDslaSU1IoxgllkClZccDZXA9olTOQHOeSTZP7cfcLrNh504I_CgdGrBcbccowz7Ns0HUgA5uPrPIuBK_rvwLB4qRYNOKsWJwUi1HxUHwai3r45GC0F0EZ3SldGa9VFJUz_038AAcojGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Co-rotational 3D beam element using quaternion algebra to account for large rotations: Dynamic equilibrium and applications</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Grange, Stéphane ; Bertrand, David</creator><creatorcontrib>Grange, Stéphane ; Bertrand, David</creatorcontrib><description>This paper presents a new co-rotational beam element based on quaternion algebra as parametrization of large rotations for dynamic applications. The co-rotational framework is based on a decomposition of the kinematics into a rigid element frame (that follows the element) and its pure deformation. Based on a previous work related to the static equilibrium, the proposed co-rotational element lies in the framework of the incremental formulations. The kinematic field description using quaternion algebra allows to calculate quaternion’s velocities and accelerations. Then, the dynamic equilibrium and the formulation of the internal mass matrix and gyroscopic terms are detailed.
Seven numerical applications in dynamic conditions are presented and compared with literature results showing the response of the proposed element in terms of conservation of the energy and convergence.
•Quaternion parametrization of large rotations in a dynamic co-rotational framework.•Dynamic operators are obtained using quaternion’s velocities and accelerations.•Linearization of the response to obtain a dynamic algorithmic tangent operator.•Seven distinct dynamic study cases are presented showing numerical capabilities.</description><identifier>ISSN: 0020-7683</identifier><identifier>DOI: 10.1016/j.ijsolstr.2024.112975</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Beam finite element ; Civil Engineering ; Co-rotational framework ; Dynamic ; Dynamique, vibrations ; Engineering Sciences ; Gyroscopic terms ; Mass matrix ; Mechanics ; Quaternions ; Structural mechanics</subject><ispartof>International journal of solids and structures, 2024-10, Vol.302, p.112975, Article 112975</ispartof><rights>2024 The Author(s)</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c271t-d347b24191f4bc692c27f917850bfcb4217c34123a5cbd4a058e1f4d63ab406b3</cites><orcidid>0000-0002-7766-0483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijsolstr.2024.112975$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04655024$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Grange, Stéphane</creatorcontrib><creatorcontrib>Bertrand, David</creatorcontrib><title>Co-rotational 3D beam element using quaternion algebra to account for large rotations: Dynamic equilibrium and applications</title><title>International journal of solids and structures</title><description>This paper presents a new co-rotational beam element based on quaternion algebra as parametrization of large rotations for dynamic applications. The co-rotational framework is based on a decomposition of the kinematics into a rigid element frame (that follows the element) and its pure deformation. Based on a previous work related to the static equilibrium, the proposed co-rotational element lies in the framework of the incremental formulations. The kinematic field description using quaternion algebra allows to calculate quaternion’s velocities and accelerations. Then, the dynamic equilibrium and the formulation of the internal mass matrix and gyroscopic terms are detailed.
Seven numerical applications in dynamic conditions are presented and compared with literature results showing the response of the proposed element in terms of conservation of the energy and convergence.
•Quaternion parametrization of large rotations in a dynamic co-rotational framework.•Dynamic operators are obtained using quaternion’s velocities and accelerations.•Linearization of the response to obtain a dynamic algorithmic tangent operator.•Seven distinct dynamic study cases are presented showing numerical capabilities.</description><subject>Beam finite element</subject><subject>Civil Engineering</subject><subject>Co-rotational framework</subject><subject>Dynamic</subject><subject>Dynamique, vibrations</subject><subject>Engineering Sciences</subject><subject>Gyroscopic terms</subject><subject>Mass matrix</subject><subject>Mechanics</subject><subject>Quaternions</subject><subject>Structural mechanics</subject><issn>0020-7683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURTOARCn8BeSVIcVfSRomqhYoUiUWmK1nxymOnLi1nUoVf55UoaxMT7o690rvJMkdwTOCSf7QzEwTnA3RzyimfEYILYvsIplgTHFa5HN2lVyH0GCMOSvxJPleutS7CNG4DixiKyQ1tEhb3eouoj6Ybov2PUTtuwFBYLdaekDRIVDK9QNTO48s-K1G56HwiFbHDlqjkN73xhrpTd8i6CoEu501aqRukssabNC3v3eafL48fyzX6eb99W252KSKFiSmFeOFpJyUpOZS5SUd4rokxTzDslaSU1IoxgllkClZccDZXA9olTOQHOeSTZP7cfcLrNh504I_CgdGrBcbccowz7Ns0HUgA5uPrPIuBK_rvwLB4qRYNOKsWJwUi1HxUHwai3r45GC0F0EZ3SldGa9VFJUz_038AAcojGQ</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Grange, Stéphane</creator><creator>Bertrand, David</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7766-0483</orcidid></search><sort><creationdate>20241001</creationdate><title>Co-rotational 3D beam element using quaternion algebra to account for large rotations: Dynamic equilibrium and applications</title><author>Grange, Stéphane ; Bertrand, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-d347b24191f4bc692c27f917850bfcb4217c34123a5cbd4a058e1f4d63ab406b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Beam finite element</topic><topic>Civil Engineering</topic><topic>Co-rotational framework</topic><topic>Dynamic</topic><topic>Dynamique, vibrations</topic><topic>Engineering Sciences</topic><topic>Gyroscopic terms</topic><topic>Mass matrix</topic><topic>Mechanics</topic><topic>Quaternions</topic><topic>Structural mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grange, Stéphane</creatorcontrib><creatorcontrib>Bertrand, David</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grange, Stéphane</au><au>Bertrand, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co-rotational 3D beam element using quaternion algebra to account for large rotations: Dynamic equilibrium and applications</atitle><jtitle>International journal of solids and structures</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>302</volume><spage>112975</spage><pages>112975-</pages><artnum>112975</artnum><issn>0020-7683</issn><abstract>This paper presents a new co-rotational beam element based on quaternion algebra as parametrization of large rotations for dynamic applications. The co-rotational framework is based on a decomposition of the kinematics into a rigid element frame (that follows the element) and its pure deformation. Based on a previous work related to the static equilibrium, the proposed co-rotational element lies in the framework of the incremental formulations. The kinematic field description using quaternion algebra allows to calculate quaternion’s velocities and accelerations. Then, the dynamic equilibrium and the formulation of the internal mass matrix and gyroscopic terms are detailed.
Seven numerical applications in dynamic conditions are presented and compared with literature results showing the response of the proposed element in terms of conservation of the energy and convergence.
•Quaternion parametrization of large rotations in a dynamic co-rotational framework.•Dynamic operators are obtained using quaternion’s velocities and accelerations.•Linearization of the response to obtain a dynamic algorithmic tangent operator.•Seven distinct dynamic study cases are presented showing numerical capabilities.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2024.112975</doi><orcidid>https://orcid.org/0000-0002-7766-0483</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7683 |
ispartof | International journal of solids and structures, 2024-10, Vol.302, p.112975, Article 112975 |
issn | 0020-7683 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04655024v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Beam finite element Civil Engineering Co-rotational framework Dynamic Dynamique, vibrations Engineering Sciences Gyroscopic terms Mass matrix Mechanics Quaternions Structural mechanics |
title | Co-rotational 3D beam element using quaternion algebra to account for large rotations: Dynamic equilibrium and applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A52%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co-rotational%203D%20beam%20element%20using%20quaternion%20algebra%20to%20account%20for%20large%20rotations:%20Dynamic%20equilibrium%20and%20applications&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Grange,%20St%C3%A9phane&rft.date=2024-10-01&rft.volume=302&rft.spage=112975&rft.pages=112975-&rft.artnum=112975&rft.issn=0020-7683&rft_id=info:doi/10.1016/j.ijsolstr.2024.112975&rft_dat=%3Celsevier_hal_p%3ES0020768324003342%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0020768324003342&rfr_iscdi=true |