Temporal Separation between Lattice Dynamics and Electronic Spin‐State Switching in Spin‐Crossover Thin Films Evidenced by Time‐Resolved X‐Ray Diffraction

Spin‐crossover (SCO) complexes have drawn significant attention for the possibility to photoswitch their electronic spin state on a sub‐picosecond timescale at the molecular level. However, the multi‐step mechanism of laser‐pulse‐induced switching in solid state is not yet fully understood. Here, ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-10, Vol.34 (41), p.n/a
Hauptverfasser: Ridier, Karl, Bertoni, Roman, Mandal, Ritwika, Volte, Alix, Jiang, Yifeng, Trzop, Elzbieta, Levantino, Matteo, Watier, Yves, Frey, Johannes, Zhang, Yuteng, Pezeril, Thomas, Cailleau, Hervé, Molnár, Gábor, Bousseksou, Azzedine, Lorenc, Maciej, Mariette, Céline
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 41
container_start_page
container_title Advanced functional materials
container_volume 34
creator Ridier, Karl
Bertoni, Roman
Mandal, Ritwika
Volte, Alix
Jiang, Yifeng
Trzop, Elzbieta
Levantino, Matteo
Watier, Yves
Frey, Johannes
Zhang, Yuteng
Pezeril, Thomas
Cailleau, Hervé
Molnár, Gábor
Bousseksou, Azzedine
Lorenc, Maciej
Mariette, Céline
description Spin‐crossover (SCO) complexes have drawn significant attention for the possibility to photoswitch their electronic spin state on a sub‐picosecond timescale at the molecular level. However, the multi‐step mechanism of laser‐pulse‐induced switching in solid state is not yet fully understood. Here, time‐resolved synchrotron X‐ray diffraction is used to follow the dynamics of the crystal lattice in response to a picosecond laser excitation in nanometric thin films of the SCO complex [Fe(HB(1,2,4‐triazol‐1‐yl)3)2]. The observed structural dynamics unambiguously reveal a lattice expansion on the 100 picosecond timescale, which is temporally decoupled both from the ultrafast molecular photoswitching process (occurring within 100 fs) and from the delayed, thermo‐elastic (Arrhenius‐driven) conversion (taking place ≈10 ns). These time‐separated dynamics are also manifested by the observation of damped acoustic oscillations in the time evolution of the lattice volume, whereas no such oscillations are observed in the electronic spin‐state dynamics. Overall, these results suggest the existence of a universal behavior whereby the intramolecular energy barrier between low‐spin and high‐spin states acts as an intrinsic dynamical bottleneck in the out‐of‐equilibrium spin‐state switching dynamics of SCO materials. Using picosecond pump‐probe synchrotron X‐ray diffraction, a temporal separation is demonstrated between volume change dynamics of the crystal lattice and molecular spin‐state switching in spin‐crossover nanometric thin films, pointing out the existence of a temporal bottleneck in the photo‐transformation process of nanomaterials. Interestingly, the photoswitching process is also accompanied by a pronounced “breathing” acoustic effect characterized by damped oscillations of the film thickness.
doi_str_mv 10.1002/adfm.202403585
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04649865v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3113495195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2365-661281cc61a42d6d9980ce588e18518bfe6b984092773bfdf6d07376f689a5603</originalsourceid><addsrcrecordid>eNqFkb9u2zAQxoWiBZqmWTMTyJTBLimJNDka_pMEcFGgdoFsBEUdEwYSqZCMDW15hD5DHy1PUglu3bHT8e5-3-GOX5ZdEjwlGOdfVG3aaY7zEheU03fZGWGETQqc8_enN7n_mH2K8QljMpsV5Vn2awdt54Nq0BY6FVSy3qEK0gHAoY1KyWpAy96p1uqIlKvRqgGdgndWo21n3dvrz21SCdD2YJN-tO4BWfe3swg-Rr-HgHZDB61t00a02tsanIYaVT3a2RYG8DtE3-yH0v2YqB4trTFB6XGdz9kHo5oIF3_iefZjvdotbiebbzd3i_lmovOC0QljJOdEa0ZUmdesFoJjDZRzIJwSXhlgleAlFvlweWVqw2o8K2bMMC4UZbg4z66Pcx9VI7tgWxV66ZWVt_ONHGu4ZKXgjO7JwF4d2S745xeIST75l-CG9WRBSFEKSgQdqOmR0uM_BDCnsQTL0TM5eiZPng0CcRQcbAP9f2g5X66__tP-BkAen7I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113495195</pqid></control><display><type>article</type><title>Temporal Separation between Lattice Dynamics and Electronic Spin‐State Switching in Spin‐Crossover Thin Films Evidenced by Time‐Resolved X‐Ray Diffraction</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Ridier, Karl ; Bertoni, Roman ; Mandal, Ritwika ; Volte, Alix ; Jiang, Yifeng ; Trzop, Elzbieta ; Levantino, Matteo ; Watier, Yves ; Frey, Johannes ; Zhang, Yuteng ; Pezeril, Thomas ; Cailleau, Hervé ; Molnár, Gábor ; Bousseksou, Azzedine ; Lorenc, Maciej ; Mariette, Céline</creator><creatorcontrib>Ridier, Karl ; Bertoni, Roman ; Mandal, Ritwika ; Volte, Alix ; Jiang, Yifeng ; Trzop, Elzbieta ; Levantino, Matteo ; Watier, Yves ; Frey, Johannes ; Zhang, Yuteng ; Pezeril, Thomas ; Cailleau, Hervé ; Molnár, Gábor ; Bousseksou, Azzedine ; Lorenc, Maciej ; Mariette, Céline</creatorcontrib><description>Spin‐crossover (SCO) complexes have drawn significant attention for the possibility to photoswitch their electronic spin state on a sub‐picosecond timescale at the molecular level. However, the multi‐step mechanism of laser‐pulse‐induced switching in solid state is not yet fully understood. Here, time‐resolved synchrotron X‐ray diffraction is used to follow the dynamics of the crystal lattice in response to a picosecond laser excitation in nanometric thin films of the SCO complex [Fe(HB(1,2,4‐triazol‐1‐yl)3)2]. The observed structural dynamics unambiguously reveal a lattice expansion on the 100 picosecond timescale, which is temporally decoupled both from the ultrafast molecular photoswitching process (occurring within 100 fs) and from the delayed, thermo‐elastic (Arrhenius‐driven) conversion (taking place ≈10 ns). These time‐separated dynamics are also manifested by the observation of damped acoustic oscillations in the time evolution of the lattice volume, whereas no such oscillations are observed in the electronic spin‐state dynamics. Overall, these results suggest the existence of a universal behavior whereby the intramolecular energy barrier between low‐spin and high‐spin states acts as an intrinsic dynamical bottleneck in the out‐of‐equilibrium spin‐state switching dynamics of SCO materials. Using picosecond pump‐probe synchrotron X‐ray diffraction, a temporal separation is demonstrated between volume change dynamics of the crystal lattice and molecular spin‐state switching in spin‐crossover nanometric thin films, pointing out the existence of a temporal bottleneck in the photo‐transformation process of nanomaterials. Interestingly, the photoswitching process is also accompanied by a pronounced “breathing” acoustic effect characterized by damped oscillations of the film thickness.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202403585</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Crossovers ; Crystal lattices ; Electron spin ; lattice dynamics ; nanometric films ; Oscillations ; photoswitching dynamics ; Physics ; Spin dynamics ; spin‐crossover materials ; Thin films ; Time ; time‐resolved X‐ray diffraction ; X-ray diffraction</subject><ispartof>Advanced functional materials, 2024-10, Vol.34 (41), p.n/a</ispartof><rights>2024 The Author(s). Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2365-661281cc61a42d6d9980ce588e18518bfe6b984092773bfdf6d07376f689a5603</cites><orcidid>0000-0002-1619-532X ; 0000-0003-0685-0498 ; 0000-0003-1998-1825 ; 0000-0002-7414-1872 ; 0000-0002-2584-9217 ; 0000-0003-3459-7127 ; 0000-0002-6877-8631 ; 0000-0002-1224-4809 ; 0000-0002-5772-3483 ; 0009-0005-3962-6865 ; 0000-0001-6032-6393 ; 0000-0001-8067-9591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202403585$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202403585$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04649865$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ridier, Karl</creatorcontrib><creatorcontrib>Bertoni, Roman</creatorcontrib><creatorcontrib>Mandal, Ritwika</creatorcontrib><creatorcontrib>Volte, Alix</creatorcontrib><creatorcontrib>Jiang, Yifeng</creatorcontrib><creatorcontrib>Trzop, Elzbieta</creatorcontrib><creatorcontrib>Levantino, Matteo</creatorcontrib><creatorcontrib>Watier, Yves</creatorcontrib><creatorcontrib>Frey, Johannes</creatorcontrib><creatorcontrib>Zhang, Yuteng</creatorcontrib><creatorcontrib>Pezeril, Thomas</creatorcontrib><creatorcontrib>Cailleau, Hervé</creatorcontrib><creatorcontrib>Molnár, Gábor</creatorcontrib><creatorcontrib>Bousseksou, Azzedine</creatorcontrib><creatorcontrib>Lorenc, Maciej</creatorcontrib><creatorcontrib>Mariette, Céline</creatorcontrib><title>Temporal Separation between Lattice Dynamics and Electronic Spin‐State Switching in Spin‐Crossover Thin Films Evidenced by Time‐Resolved X‐Ray Diffraction</title><title>Advanced functional materials</title><description>Spin‐crossover (SCO) complexes have drawn significant attention for the possibility to photoswitch their electronic spin state on a sub‐picosecond timescale at the molecular level. However, the multi‐step mechanism of laser‐pulse‐induced switching in solid state is not yet fully understood. Here, time‐resolved synchrotron X‐ray diffraction is used to follow the dynamics of the crystal lattice in response to a picosecond laser excitation in nanometric thin films of the SCO complex [Fe(HB(1,2,4‐triazol‐1‐yl)3)2]. The observed structural dynamics unambiguously reveal a lattice expansion on the 100 picosecond timescale, which is temporally decoupled both from the ultrafast molecular photoswitching process (occurring within 100 fs) and from the delayed, thermo‐elastic (Arrhenius‐driven) conversion (taking place ≈10 ns). These time‐separated dynamics are also manifested by the observation of damped acoustic oscillations in the time evolution of the lattice volume, whereas no such oscillations are observed in the electronic spin‐state dynamics. Overall, these results suggest the existence of a universal behavior whereby the intramolecular energy barrier between low‐spin and high‐spin states acts as an intrinsic dynamical bottleneck in the out‐of‐equilibrium spin‐state switching dynamics of SCO materials. Using picosecond pump‐probe synchrotron X‐ray diffraction, a temporal separation is demonstrated between volume change dynamics of the crystal lattice and molecular spin‐state switching in spin‐crossover nanometric thin films, pointing out the existence of a temporal bottleneck in the photo‐transformation process of nanomaterials. Interestingly, the photoswitching process is also accompanied by a pronounced “breathing” acoustic effect characterized by damped oscillations of the film thickness.</description><subject>Crossovers</subject><subject>Crystal lattices</subject><subject>Electron spin</subject><subject>lattice dynamics</subject><subject>nanometric films</subject><subject>Oscillations</subject><subject>photoswitching dynamics</subject><subject>Physics</subject><subject>Spin dynamics</subject><subject>spin‐crossover materials</subject><subject>Thin films</subject><subject>Time</subject><subject>time‐resolved X‐ray diffraction</subject><subject>X-ray diffraction</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkb9u2zAQxoWiBZqmWTMTyJTBLimJNDka_pMEcFGgdoFsBEUdEwYSqZCMDW15hD5DHy1PUglu3bHT8e5-3-GOX5ZdEjwlGOdfVG3aaY7zEheU03fZGWGETQqc8_enN7n_mH2K8QljMpsV5Vn2awdt54Nq0BY6FVSy3qEK0gHAoY1KyWpAy96p1uqIlKvRqgGdgndWo21n3dvrz21SCdD2YJN-tO4BWfe3swg-Rr-HgHZDB61t00a02tsanIYaVT3a2RYG8DtE3-yH0v2YqB4trTFB6XGdz9kHo5oIF3_iefZjvdotbiebbzd3i_lmovOC0QljJOdEa0ZUmdesFoJjDZRzIJwSXhlgleAlFvlweWVqw2o8K2bMMC4UZbg4z66Pcx9VI7tgWxV66ZWVt_ONHGu4ZKXgjO7JwF4d2S745xeIST75l-CG9WRBSFEKSgQdqOmR0uM_BDCnsQTL0TM5eiZPng0CcRQcbAP9f2g5X66__tP-BkAen7I</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Ridier, Karl</creator><creator>Bertoni, Roman</creator><creator>Mandal, Ritwika</creator><creator>Volte, Alix</creator><creator>Jiang, Yifeng</creator><creator>Trzop, Elzbieta</creator><creator>Levantino, Matteo</creator><creator>Watier, Yves</creator><creator>Frey, Johannes</creator><creator>Zhang, Yuteng</creator><creator>Pezeril, Thomas</creator><creator>Cailleau, Hervé</creator><creator>Molnár, Gábor</creator><creator>Bousseksou, Azzedine</creator><creator>Lorenc, Maciej</creator><creator>Mariette, Céline</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1619-532X</orcidid><orcidid>https://orcid.org/0000-0003-0685-0498</orcidid><orcidid>https://orcid.org/0000-0003-1998-1825</orcidid><orcidid>https://orcid.org/0000-0002-7414-1872</orcidid><orcidid>https://orcid.org/0000-0002-2584-9217</orcidid><orcidid>https://orcid.org/0000-0003-3459-7127</orcidid><orcidid>https://orcid.org/0000-0002-6877-8631</orcidid><orcidid>https://orcid.org/0000-0002-1224-4809</orcidid><orcidid>https://orcid.org/0000-0002-5772-3483</orcidid><orcidid>https://orcid.org/0009-0005-3962-6865</orcidid><orcidid>https://orcid.org/0000-0001-6032-6393</orcidid><orcidid>https://orcid.org/0000-0001-8067-9591</orcidid></search><sort><creationdate>20241001</creationdate><title>Temporal Separation between Lattice Dynamics and Electronic Spin‐State Switching in Spin‐Crossover Thin Films Evidenced by Time‐Resolved X‐Ray Diffraction</title><author>Ridier, Karl ; Bertoni, Roman ; Mandal, Ritwika ; Volte, Alix ; Jiang, Yifeng ; Trzop, Elzbieta ; Levantino, Matteo ; Watier, Yves ; Frey, Johannes ; Zhang, Yuteng ; Pezeril, Thomas ; Cailleau, Hervé ; Molnár, Gábor ; Bousseksou, Azzedine ; Lorenc, Maciej ; Mariette, Céline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2365-661281cc61a42d6d9980ce588e18518bfe6b984092773bfdf6d07376f689a5603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Crossovers</topic><topic>Crystal lattices</topic><topic>Electron spin</topic><topic>lattice dynamics</topic><topic>nanometric films</topic><topic>Oscillations</topic><topic>photoswitching dynamics</topic><topic>Physics</topic><topic>Spin dynamics</topic><topic>spin‐crossover materials</topic><topic>Thin films</topic><topic>Time</topic><topic>time‐resolved X‐ray diffraction</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ridier, Karl</creatorcontrib><creatorcontrib>Bertoni, Roman</creatorcontrib><creatorcontrib>Mandal, Ritwika</creatorcontrib><creatorcontrib>Volte, Alix</creatorcontrib><creatorcontrib>Jiang, Yifeng</creatorcontrib><creatorcontrib>Trzop, Elzbieta</creatorcontrib><creatorcontrib>Levantino, Matteo</creatorcontrib><creatorcontrib>Watier, Yves</creatorcontrib><creatorcontrib>Frey, Johannes</creatorcontrib><creatorcontrib>Zhang, Yuteng</creatorcontrib><creatorcontrib>Pezeril, Thomas</creatorcontrib><creatorcontrib>Cailleau, Hervé</creatorcontrib><creatorcontrib>Molnár, Gábor</creatorcontrib><creatorcontrib>Bousseksou, Azzedine</creatorcontrib><creatorcontrib>Lorenc, Maciej</creatorcontrib><creatorcontrib>Mariette, Céline</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ridier, Karl</au><au>Bertoni, Roman</au><au>Mandal, Ritwika</au><au>Volte, Alix</au><au>Jiang, Yifeng</au><au>Trzop, Elzbieta</au><au>Levantino, Matteo</au><au>Watier, Yves</au><au>Frey, Johannes</au><au>Zhang, Yuteng</au><au>Pezeril, Thomas</au><au>Cailleau, Hervé</au><au>Molnár, Gábor</au><au>Bousseksou, Azzedine</au><au>Lorenc, Maciej</au><au>Mariette, Céline</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal Separation between Lattice Dynamics and Electronic Spin‐State Switching in Spin‐Crossover Thin Films Evidenced by Time‐Resolved X‐Ray Diffraction</atitle><jtitle>Advanced functional materials</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>34</volume><issue>41</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Spin‐crossover (SCO) complexes have drawn significant attention for the possibility to photoswitch their electronic spin state on a sub‐picosecond timescale at the molecular level. However, the multi‐step mechanism of laser‐pulse‐induced switching in solid state is not yet fully understood. Here, time‐resolved synchrotron X‐ray diffraction is used to follow the dynamics of the crystal lattice in response to a picosecond laser excitation in nanometric thin films of the SCO complex [Fe(HB(1,2,4‐triazol‐1‐yl)3)2]. The observed structural dynamics unambiguously reveal a lattice expansion on the 100 picosecond timescale, which is temporally decoupled both from the ultrafast molecular photoswitching process (occurring within 100 fs) and from the delayed, thermo‐elastic (Arrhenius‐driven) conversion (taking place ≈10 ns). These time‐separated dynamics are also manifested by the observation of damped acoustic oscillations in the time evolution of the lattice volume, whereas no such oscillations are observed in the electronic spin‐state dynamics. Overall, these results suggest the existence of a universal behavior whereby the intramolecular energy barrier between low‐spin and high‐spin states acts as an intrinsic dynamical bottleneck in the out‐of‐equilibrium spin‐state switching dynamics of SCO materials. Using picosecond pump‐probe synchrotron X‐ray diffraction, a temporal separation is demonstrated between volume change dynamics of the crystal lattice and molecular spin‐state switching in spin‐crossover nanometric thin films, pointing out the existence of a temporal bottleneck in the photo‐transformation process of nanomaterials. Interestingly, the photoswitching process is also accompanied by a pronounced “breathing” acoustic effect characterized by damped oscillations of the film thickness.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202403585</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1619-532X</orcidid><orcidid>https://orcid.org/0000-0003-0685-0498</orcidid><orcidid>https://orcid.org/0000-0003-1998-1825</orcidid><orcidid>https://orcid.org/0000-0002-7414-1872</orcidid><orcidid>https://orcid.org/0000-0002-2584-9217</orcidid><orcidid>https://orcid.org/0000-0003-3459-7127</orcidid><orcidid>https://orcid.org/0000-0002-6877-8631</orcidid><orcidid>https://orcid.org/0000-0002-1224-4809</orcidid><orcidid>https://orcid.org/0000-0002-5772-3483</orcidid><orcidid>https://orcid.org/0009-0005-3962-6865</orcidid><orcidid>https://orcid.org/0000-0001-6032-6393</orcidid><orcidid>https://orcid.org/0000-0001-8067-9591</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-10, Vol.34 (41), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_hal_primary_oai_HAL_hal_04649865v1
source Wiley Online Library - AutoHoldings Journals
subjects Crossovers
Crystal lattices
Electron spin
lattice dynamics
nanometric films
Oscillations
photoswitching dynamics
Physics
Spin dynamics
spin‐crossover materials
Thin films
Time
time‐resolved X‐ray diffraction
X-ray diffraction
title Temporal Separation between Lattice Dynamics and Electronic Spin‐State Switching in Spin‐Crossover Thin Films Evidenced by Time‐Resolved X‐Ray Diffraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20Separation%20between%20Lattice%20Dynamics%20and%20Electronic%20Spin%E2%80%90State%20Switching%20in%20Spin%E2%80%90Crossover%20Thin%20Films%20Evidenced%20by%20Time%E2%80%90Resolved%20X%E2%80%90Ray%20Diffraction&rft.jtitle=Advanced%20functional%20materials&rft.au=Ridier,%20Karl&rft.date=2024-10-01&rft.volume=34&rft.issue=41&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202403585&rft_dat=%3Cproquest_hal_p%3E3113495195%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113495195&rft_id=info:pmid/&rfr_iscdi=true