Superlubricity from mechanochemically activated aromatic molecules of natural origin: A new concept for green lubrication

As much as 23 % of the world's energy is consumed in tribological contacts and reducing friction and wear can have a substantial environmental impact. However, the large majority of lubricants and additives, still based on crude oil, are becoming less and less sustainable: environmentally frien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2024-09, Vol.228, p.119365, Article 119365
Hauptverfasser: Long, Yun, Pacini, Alberto, Ferrario, Mauro, Van Tran, Nam, Peeters, S., Thiebaut, Benoit, Loehlé, Sophie, Martin, Jean Michel, Righi, M. Clelia, De Barros Bouchet, Maria-Isabel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 119365
container_title Carbon (New York)
container_volume 228
creator Long, Yun
Pacini, Alberto
Ferrario, Mauro
Van Tran, Nam
Peeters, S.
Thiebaut, Benoit
Loehlé, Sophie
Martin, Jean Michel
Righi, M. Clelia
De Barros Bouchet, Maria-Isabel
description As much as 23 % of the world's energy is consumed in tribological contacts and reducing friction and wear can have a substantial environmental impact. However, the large majority of lubricants and additives, still based on crude oil, are becoming less and less sustainable: environmentally friendly alternatives are in dire need. Hypericin, a natural constituent of St. John's wort commonly known as antidepressant/antiviral/antibiotic medicinal, is here revealed to have an outstanding potential as friction modifier. Indeed, sustainable superlubricity performance, with friction coefficient below 0.01 under boundary lubrication, is observed when adding hypericin to glycerol to lubricate steel/SiC tribopairs. XPS and Raman spectroscopies revealed the formation of graphitic structures on surfaces rubbed in the presence of hypericin and High-Resolution-Transmission-Electron microscopy on focused ion-beam cross-sections evidenced the first stage of tribofilm polymerization and subsequent formation of graphene. First-principles calculations elucidate the thermodynamic forces driving graphene-formation induced by mechanochemical reactions. The process, tribologically promoted, was monitored in real-time by (ab-initio) molecular dynamics. Formation of graphene patches was found to strongly correlate with friction coefficient reductions up to the superlubricity limit. This work suggests an unconventional way towards formation of graphene-like materials through mechanochemistry and reveals the great potential of pharmacopeia-derived molecules as newly-emerging environment-friendly lubricant additives for industrial applications, opening new ways to formulate water-based lubricants, nowadays considered a strategic oils-alternative to reduce carbon footprint. [Display omitted]
doi_str_mv 10.1016/j.carbon.2024.119365
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04638491v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622324005840</els_id><sourcerecordid>oai_HAL_hal_04638491v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-4bdfd43e37160a53cabeb1d1845d176db9f71b4e39ef482b8396a9ebff51e5c03</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhT2ARCn8AwavDA127KQJA1JVAUWqxADMlu2cW1eOXTlOUf49qYIYmU53eu-d3ofQHSUZJbR8OGRaRhV8lpOcZ5TWrCwu0IwQUi3KPGdX6LrrDuPKK8pnaPjojxBdr6LVNg3YxNDiFvRe-qD30FotnRuw1MmeZIIGy1Egk9W4DQ5076DDwWAvUx-lwyHanfWPeIU9fGMdvIZjwiZEvIsAHk-PRn_wN-jSSNfB7e-co6-X58_1ZrF9f31br7YLndM6LbhqTMMZsCUtiSyYlgoUbWjFi4Yuy0bVZkkVB1aD4VWuKlaXsgZlTEGh0ITN0f2Uu5dOHKNtZRxEkFZsVltxvhFesorX9ERHLZ-0Ooaui2D-DJSIM15xEBNeccYrJryj7WmywdjjZCGKTlsYuzc2gk6iCfb_gB_QWIpl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Superlubricity from mechanochemically activated aromatic molecules of natural origin: A new concept for green lubrication</title><source>Access via ScienceDirect (Elsevier)</source><creator>Long, Yun ; Pacini, Alberto ; Ferrario, Mauro ; Van Tran, Nam ; Peeters, S. ; Thiebaut, Benoit ; Loehlé, Sophie ; Martin, Jean Michel ; Righi, M. Clelia ; De Barros Bouchet, Maria-Isabel</creator><creatorcontrib>Long, Yun ; Pacini, Alberto ; Ferrario, Mauro ; Van Tran, Nam ; Peeters, S. ; Thiebaut, Benoit ; Loehlé, Sophie ; Martin, Jean Michel ; Righi, M. Clelia ; De Barros Bouchet, Maria-Isabel</creatorcontrib><description>As much as 23 % of the world's energy is consumed in tribological contacts and reducing friction and wear can have a substantial environmental impact. However, the large majority of lubricants and additives, still based on crude oil, are becoming less and less sustainable: environmentally friendly alternatives are in dire need. Hypericin, a natural constituent of St. John's wort commonly known as antidepressant/antiviral/antibiotic medicinal, is here revealed to have an outstanding potential as friction modifier. Indeed, sustainable superlubricity performance, with friction coefficient below 0.01 under boundary lubrication, is observed when adding hypericin to glycerol to lubricate steel/SiC tribopairs. XPS and Raman spectroscopies revealed the formation of graphitic structures on surfaces rubbed in the presence of hypericin and High-Resolution-Transmission-Electron microscopy on focused ion-beam cross-sections evidenced the first stage of tribofilm polymerization and subsequent formation of graphene. First-principles calculations elucidate the thermodynamic forces driving graphene-formation induced by mechanochemical reactions. The process, tribologically promoted, was monitored in real-time by (ab-initio) molecular dynamics. Formation of graphene patches was found to strongly correlate with friction coefficient reductions up to the superlubricity limit. This work suggests an unconventional way towards formation of graphene-like materials through mechanochemistry and reveals the great potential of pharmacopeia-derived molecules as newly-emerging environment-friendly lubricant additives for industrial applications, opening new ways to formulate water-based lubricants, nowadays considered a strategic oils-alternative to reduce carbon footprint. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>DOI: 10.1016/j.carbon.2024.119365</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Ab-initio molecular dynamics ; Chemical Sciences ; Engineering Sciences ; Graphene ; Green lubrication ; High-resolution transmission electron microscopy ; Hypericin ; Superlubricity ; Tribochemistry</subject><ispartof>Carbon (New York), 2024-09, Vol.228, p.119365, Article 119365</ispartof><rights>2024 The Authors</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-4bdfd43e37160a53cabeb1d1845d176db9f71b4e39ef482b8396a9ebff51e5c03</cites><orcidid>0000-0001-6754-9055 ; 0000-0001-5115-5801 ; 0000-0002-3873-5470 ; 0000-0002-3362-8633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2024.119365$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://ec-lyon.hal.science/hal-04638491$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Long, Yun</creatorcontrib><creatorcontrib>Pacini, Alberto</creatorcontrib><creatorcontrib>Ferrario, Mauro</creatorcontrib><creatorcontrib>Van Tran, Nam</creatorcontrib><creatorcontrib>Peeters, S.</creatorcontrib><creatorcontrib>Thiebaut, Benoit</creatorcontrib><creatorcontrib>Loehlé, Sophie</creatorcontrib><creatorcontrib>Martin, Jean Michel</creatorcontrib><creatorcontrib>Righi, M. Clelia</creatorcontrib><creatorcontrib>De Barros Bouchet, Maria-Isabel</creatorcontrib><title>Superlubricity from mechanochemically activated aromatic molecules of natural origin: A new concept for green lubrication</title><title>Carbon (New York)</title><description>As much as 23 % of the world's energy is consumed in tribological contacts and reducing friction and wear can have a substantial environmental impact. However, the large majority of lubricants and additives, still based on crude oil, are becoming less and less sustainable: environmentally friendly alternatives are in dire need. Hypericin, a natural constituent of St. John's wort commonly known as antidepressant/antiviral/antibiotic medicinal, is here revealed to have an outstanding potential as friction modifier. Indeed, sustainable superlubricity performance, with friction coefficient below 0.01 under boundary lubrication, is observed when adding hypericin to glycerol to lubricate steel/SiC tribopairs. XPS and Raman spectroscopies revealed the formation of graphitic structures on surfaces rubbed in the presence of hypericin and High-Resolution-Transmission-Electron microscopy on focused ion-beam cross-sections evidenced the first stage of tribofilm polymerization and subsequent formation of graphene. First-principles calculations elucidate the thermodynamic forces driving graphene-formation induced by mechanochemical reactions. The process, tribologically promoted, was monitored in real-time by (ab-initio) molecular dynamics. Formation of graphene patches was found to strongly correlate with friction coefficient reductions up to the superlubricity limit. This work suggests an unconventional way towards formation of graphene-like materials through mechanochemistry and reveals the great potential of pharmacopeia-derived molecules as newly-emerging environment-friendly lubricant additives for industrial applications, opening new ways to formulate water-based lubricants, nowadays considered a strategic oils-alternative to reduce carbon footprint. [Display omitted]</description><subject>Ab-initio molecular dynamics</subject><subject>Chemical Sciences</subject><subject>Engineering Sciences</subject><subject>Graphene</subject><subject>Green lubrication</subject><subject>High-resolution transmission electron microscopy</subject><subject>Hypericin</subject><subject>Superlubricity</subject><subject>Tribochemistry</subject><issn>0008-6223</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhT2ARCn8AwavDA127KQJA1JVAUWqxADMlu2cW1eOXTlOUf49qYIYmU53eu-d3ofQHSUZJbR8OGRaRhV8lpOcZ5TWrCwu0IwQUi3KPGdX6LrrDuPKK8pnaPjojxBdr6LVNg3YxNDiFvRe-qD30FotnRuw1MmeZIIGy1Egk9W4DQ5076DDwWAvUx-lwyHanfWPeIU9fGMdvIZjwiZEvIsAHk-PRn_wN-jSSNfB7e-co6-X58_1ZrF9f31br7YLndM6LbhqTMMZsCUtiSyYlgoUbWjFi4Yuy0bVZkkVB1aD4VWuKlaXsgZlTEGh0ITN0f2Uu5dOHKNtZRxEkFZsVltxvhFesorX9ERHLZ-0Ooaui2D-DJSIM15xEBNeccYrJryj7WmywdjjZCGKTlsYuzc2gk6iCfb_gB_QWIpl</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Long, Yun</creator><creator>Pacini, Alberto</creator><creator>Ferrario, Mauro</creator><creator>Van Tran, Nam</creator><creator>Peeters, S.</creator><creator>Thiebaut, Benoit</creator><creator>Loehlé, Sophie</creator><creator>Martin, Jean Michel</creator><creator>Righi, M. Clelia</creator><creator>De Barros Bouchet, Maria-Isabel</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6754-9055</orcidid><orcidid>https://orcid.org/0000-0001-5115-5801</orcidid><orcidid>https://orcid.org/0000-0002-3873-5470</orcidid><orcidid>https://orcid.org/0000-0002-3362-8633</orcidid></search><sort><creationdate>202409</creationdate><title>Superlubricity from mechanochemically activated aromatic molecules of natural origin: A new concept for green lubrication</title><author>Long, Yun ; Pacini, Alberto ; Ferrario, Mauro ; Van Tran, Nam ; Peeters, S. ; Thiebaut, Benoit ; Loehlé, Sophie ; Martin, Jean Michel ; Righi, M. Clelia ; De Barros Bouchet, Maria-Isabel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-4bdfd43e37160a53cabeb1d1845d176db9f71b4e39ef482b8396a9ebff51e5c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ab-initio molecular dynamics</topic><topic>Chemical Sciences</topic><topic>Engineering Sciences</topic><topic>Graphene</topic><topic>Green lubrication</topic><topic>High-resolution transmission electron microscopy</topic><topic>Hypericin</topic><topic>Superlubricity</topic><topic>Tribochemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Yun</creatorcontrib><creatorcontrib>Pacini, Alberto</creatorcontrib><creatorcontrib>Ferrario, Mauro</creatorcontrib><creatorcontrib>Van Tran, Nam</creatorcontrib><creatorcontrib>Peeters, S.</creatorcontrib><creatorcontrib>Thiebaut, Benoit</creatorcontrib><creatorcontrib>Loehlé, Sophie</creatorcontrib><creatorcontrib>Martin, Jean Michel</creatorcontrib><creatorcontrib>Righi, M. Clelia</creatorcontrib><creatorcontrib>De Barros Bouchet, Maria-Isabel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Yun</au><au>Pacini, Alberto</au><au>Ferrario, Mauro</au><au>Van Tran, Nam</au><au>Peeters, S.</au><au>Thiebaut, Benoit</au><au>Loehlé, Sophie</au><au>Martin, Jean Michel</au><au>Righi, M. Clelia</au><au>De Barros Bouchet, Maria-Isabel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superlubricity from mechanochemically activated aromatic molecules of natural origin: A new concept for green lubrication</atitle><jtitle>Carbon (New York)</jtitle><date>2024-09</date><risdate>2024</risdate><volume>228</volume><spage>119365</spage><pages>119365-</pages><artnum>119365</artnum><issn>0008-6223</issn><abstract>As much as 23 % of the world's energy is consumed in tribological contacts and reducing friction and wear can have a substantial environmental impact. However, the large majority of lubricants and additives, still based on crude oil, are becoming less and less sustainable: environmentally friendly alternatives are in dire need. Hypericin, a natural constituent of St. John's wort commonly known as antidepressant/antiviral/antibiotic medicinal, is here revealed to have an outstanding potential as friction modifier. Indeed, sustainable superlubricity performance, with friction coefficient below 0.01 under boundary lubrication, is observed when adding hypericin to glycerol to lubricate steel/SiC tribopairs. XPS and Raman spectroscopies revealed the formation of graphitic structures on surfaces rubbed in the presence of hypericin and High-Resolution-Transmission-Electron microscopy on focused ion-beam cross-sections evidenced the first stage of tribofilm polymerization and subsequent formation of graphene. First-principles calculations elucidate the thermodynamic forces driving graphene-formation induced by mechanochemical reactions. The process, tribologically promoted, was monitored in real-time by (ab-initio) molecular dynamics. Formation of graphene patches was found to strongly correlate with friction coefficient reductions up to the superlubricity limit. This work suggests an unconventional way towards formation of graphene-like materials through mechanochemistry and reveals the great potential of pharmacopeia-derived molecules as newly-emerging environment-friendly lubricant additives for industrial applications, opening new ways to formulate water-based lubricants, nowadays considered a strategic oils-alternative to reduce carbon footprint. [Display omitted]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2024.119365</doi><orcidid>https://orcid.org/0000-0001-6754-9055</orcidid><orcidid>https://orcid.org/0000-0001-5115-5801</orcidid><orcidid>https://orcid.org/0000-0002-3873-5470</orcidid><orcidid>https://orcid.org/0000-0002-3362-8633</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2024-09, Vol.228, p.119365, Article 119365
issn 0008-6223
language eng
recordid cdi_hal_primary_oai_HAL_hal_04638491v1
source Access via ScienceDirect (Elsevier)
subjects Ab-initio molecular dynamics
Chemical Sciences
Engineering Sciences
Graphene
Green lubrication
High-resolution transmission electron microscopy
Hypericin
Superlubricity
Tribochemistry
title Superlubricity from mechanochemically activated aromatic molecules of natural origin: A new concept for green lubrication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A19%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superlubricity%20from%20mechanochemically%20activated%20aromatic%20molecules%20of%20natural%20origin:%20A%20new%20concept%20for%20green%20lubrication&rft.jtitle=Carbon%20(New%20York)&rft.au=Long,%20Yun&rft.date=2024-09&rft.volume=228&rft.spage=119365&rft.pages=119365-&rft.artnum=119365&rft.issn=0008-6223&rft_id=info:doi/10.1016/j.carbon.2024.119365&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04638491v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0008622324005840&rfr_iscdi=true