Structural Influence on Exciton Migration and Singlet Oxygen Photosensitization in Porphyrinic Metal–Organic Coordination Networks

A hexagonal three-dimensional (3D) metal–organic coordination network (MOCN) [(ZnTPyP)·0.75 DMSO] n (3D Helix) and a one-dimensional (1D) coordination polymer [(ZnTPyP)·DMF] n (1D Ladder) (ZnTPyP = 5,10,15,20-tetrakis­(4-pyridyl)­porphyrinatozinc­(II)) are prepared and their photophysical properties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2022-08, Vol.34 (16), p.7242-7255
Hauptverfasser: Asselin, Paul, Schlachter, Adrien, Fortin, Daniel, Karsenti, Paul-Ludovic, Harvey, Pierre D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7255
container_issue 16
container_start_page 7242
container_title Chemistry of materials
container_volume 34
creator Asselin, Paul
Schlachter, Adrien
Fortin, Daniel
Karsenti, Paul-Ludovic
Harvey, Pierre D.
description A hexagonal three-dimensional (3D) metal–organic coordination network (MOCN) [(ZnTPyP)·0.75 DMSO] n (3D Helix) and a one-dimensional (1D) coordination polymer [(ZnTPyP)·DMF] n (1D Ladder) (ZnTPyP = 5,10,15,20-tetrakis­(4-pyridyl)­porphyrinatozinc­(II)) are prepared and their photophysical properties are investigated to assess their ability to promote efficient exciton energy migration through singlet–singlet annihilation processes and to photosensitize singlet oxygen (1O2(g)). The presence and absence of annihilation in 3D Helix and 1D Ladder, respectively, are indicative of their ability to efficiently promote exciton migration. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were used to demonstrate the presence of interporphyrin couplings in the 3D Helix structure. Using Forster’s theory of energy transfer, the relative efficiencies of exciton migration across the bulk were correlated with the structural parameter κ2/r 6, indicative of the relative orientations and distance between the donor and acceptor. Concurrently, based on the magnitude of 1O2(g) phosphorescence (1280 nm), it was noted that 3D Helix photosensitizes 1O2(g) more efficiently than 1D Ladder (by roughly 1 order of magnitude). During this study, a new two-dimensional (2D)-MOCN was prepared, 2D Grid [(ZnTPyP)·4CHCl3] n , but weak Zn···N interactions and evaporation of CHCl3 transformed 2D Grid into a multiphasic mixture (ZnTPyP Morph) containing both 3D Helix and other 1D ladder-like species.
doi_str_mv 10.1021/acs.chemmater.2c01105
format Article
fullrecord <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04632369v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a361054729</sourcerecordid><originalsourceid>FETCH-LOGICAL-a259t-ce849090fa7a5ffe3712681ba6a6a2bc1ef3ff882496f0d2bc96ec04067a34fb3</originalsourceid><addsrcrecordid>eNqFkM1OAjEUhRujiYg-gslsXQy2nf8lISgkICbouimlnSkOLWk7Cq5c-Aa-oU9iJ0PYmrs4t6ffadIDwC2CAwQxuqfMDljFt1vquBlgBhGCyRnooQTDMIEQn4MezIssjLMkvQRX1m5gy-C8B76XzjTMNYbWwVSJuuGK8UCrYLxn0nmdy9JQJ_1G1TpYSlXW3AWL_aHkKniutNOWKyud_Owo6V1tdtXBSCVZMOeO1r9fPwtT0vY80tqsperYJ-4-tHmz1-BC0Nrym6P2wevD-GU0CWeLx-loOAspTgoXMp7HBSygoBlNhOBRhnCaoxVN_eAVQ1xEQuQ5jotUwLV3ipQzGMM0o1EsVlEf3HXvVrQmOyO31ByIppJMhjPSejBOIxylxTvybNKxzGhrDRenAIKkrZ342smpdnKs3edQl2uvN7oxyv_on8wf_U-PdA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural Influence on Exciton Migration and Singlet Oxygen Photosensitization in Porphyrinic Metal–Organic Coordination Networks</title><source>American Chemical Society Journals</source><creator>Asselin, Paul ; Schlachter, Adrien ; Fortin, Daniel ; Karsenti, Paul-Ludovic ; Harvey, Pierre D.</creator><creatorcontrib>Asselin, Paul ; Schlachter, Adrien ; Fortin, Daniel ; Karsenti, Paul-Ludovic ; Harvey, Pierre D.</creatorcontrib><description>A hexagonal three-dimensional (3D) metal–organic coordination network (MOCN) [(ZnTPyP)·0.75 DMSO] n (3D Helix) and a one-dimensional (1D) coordination polymer [(ZnTPyP)·DMF] n (1D Ladder) (ZnTPyP = 5,10,15,20-tetrakis­(4-pyridyl)­porphyrinatozinc­(II)) are prepared and their photophysical properties are investigated to assess their ability to promote efficient exciton energy migration through singlet–singlet annihilation processes and to photosensitize singlet oxygen (1O2(g)). The presence and absence of annihilation in 3D Helix and 1D Ladder, respectively, are indicative of their ability to efficiently promote exciton migration. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were used to demonstrate the presence of interporphyrin couplings in the 3D Helix structure. Using Forster’s theory of energy transfer, the relative efficiencies of exciton migration across the bulk were correlated with the structural parameter κ2/r 6, indicative of the relative orientations and distance between the donor and acceptor. Concurrently, based on the magnitude of 1O2(g) phosphorescence (1280 nm), it was noted that 3D Helix photosensitizes 1O2(g) more efficiently than 1D Ladder (by roughly 1 order of magnitude). During this study, a new two-dimensional (2D)-MOCN was prepared, 2D Grid [(ZnTPyP)·4CHCl3] n , but weak Zn···N interactions and evaporation of CHCl3 transformed 2D Grid into a multiphasic mixture (ZnTPyP Morph) containing both 3D Helix and other 1D ladder-like species.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.2c01105</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Chemical Sciences</subject><ispartof>Chemistry of materials, 2022-08, Vol.34 (16), p.7242-7255</ispartof><rights>2022 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a259t-ce849090fa7a5ffe3712681ba6a6a2bc1ef3ff882496f0d2bc96ec04067a34fb3</citedby><cites>FETCH-LOGICAL-a259t-ce849090fa7a5ffe3712681ba6a6a2bc1ef3ff882496f0d2bc96ec04067a34fb3</cites><orcidid>0000-0002-6809-1629 ; 0000-0003-2241-1030 ; 0000-0001-5215-8908 ; 0000-0002-0223-6362</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.2c01105$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.2c01105$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04632369$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Asselin, Paul</creatorcontrib><creatorcontrib>Schlachter, Adrien</creatorcontrib><creatorcontrib>Fortin, Daniel</creatorcontrib><creatorcontrib>Karsenti, Paul-Ludovic</creatorcontrib><creatorcontrib>Harvey, Pierre D.</creatorcontrib><title>Structural Influence on Exciton Migration and Singlet Oxygen Photosensitization in Porphyrinic Metal–Organic Coordination Networks</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>A hexagonal three-dimensional (3D) metal–organic coordination network (MOCN) [(ZnTPyP)·0.75 DMSO] n (3D Helix) and a one-dimensional (1D) coordination polymer [(ZnTPyP)·DMF] n (1D Ladder) (ZnTPyP = 5,10,15,20-tetrakis­(4-pyridyl)­porphyrinatozinc­(II)) are prepared and their photophysical properties are investigated to assess their ability to promote efficient exciton energy migration through singlet–singlet annihilation processes and to photosensitize singlet oxygen (1O2(g)). The presence and absence of annihilation in 3D Helix and 1D Ladder, respectively, are indicative of their ability to efficiently promote exciton migration. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were used to demonstrate the presence of interporphyrin couplings in the 3D Helix structure. Using Forster’s theory of energy transfer, the relative efficiencies of exciton migration across the bulk were correlated with the structural parameter κ2/r 6, indicative of the relative orientations and distance between the donor and acceptor. Concurrently, based on the magnitude of 1O2(g) phosphorescence (1280 nm), it was noted that 3D Helix photosensitizes 1O2(g) more efficiently than 1D Ladder (by roughly 1 order of magnitude). During this study, a new two-dimensional (2D)-MOCN was prepared, 2D Grid [(ZnTPyP)·4CHCl3] n , but weak Zn···N interactions and evaporation of CHCl3 transformed 2D Grid into a multiphasic mixture (ZnTPyP Morph) containing both 3D Helix and other 1D ladder-like species.</description><subject>Chemical Sciences</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OAjEUhRujiYg-gslsXQy2nf8lISgkICbouimlnSkOLWk7Cq5c-Aa-oU9iJ0PYmrs4t6ffadIDwC2CAwQxuqfMDljFt1vquBlgBhGCyRnooQTDMIEQn4MezIssjLMkvQRX1m5gy-C8B76XzjTMNYbWwVSJuuGK8UCrYLxn0nmdy9JQJ_1G1TpYSlXW3AWL_aHkKniutNOWKyud_Owo6V1tdtXBSCVZMOeO1r9fPwtT0vY80tqsperYJ-4-tHmz1-BC0Nrym6P2wevD-GU0CWeLx-loOAspTgoXMp7HBSygoBlNhOBRhnCaoxVN_eAVQ1xEQuQ5jotUwLV3ipQzGMM0o1EsVlEf3HXvVrQmOyO31ByIppJMhjPSejBOIxylxTvybNKxzGhrDRenAIKkrZ342smpdnKs3edQl2uvN7oxyv_on8wf_U-PdA</recordid><startdate>20220823</startdate><enddate>20220823</enddate><creator>Asselin, Paul</creator><creator>Schlachter, Adrien</creator><creator>Fortin, Daniel</creator><creator>Karsenti, Paul-Ludovic</creator><creator>Harvey, Pierre D.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6809-1629</orcidid><orcidid>https://orcid.org/0000-0003-2241-1030</orcidid><orcidid>https://orcid.org/0000-0001-5215-8908</orcidid><orcidid>https://orcid.org/0000-0002-0223-6362</orcidid></search><sort><creationdate>20220823</creationdate><title>Structural Influence on Exciton Migration and Singlet Oxygen Photosensitization in Porphyrinic Metal–Organic Coordination Networks</title><author>Asselin, Paul ; Schlachter, Adrien ; Fortin, Daniel ; Karsenti, Paul-Ludovic ; Harvey, Pierre D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a259t-ce849090fa7a5ffe3712681ba6a6a2bc1ef3ff882496f0d2bc96ec04067a34fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asselin, Paul</creatorcontrib><creatorcontrib>Schlachter, Adrien</creatorcontrib><creatorcontrib>Fortin, Daniel</creatorcontrib><creatorcontrib>Karsenti, Paul-Ludovic</creatorcontrib><creatorcontrib>Harvey, Pierre D.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asselin, Paul</au><au>Schlachter, Adrien</au><au>Fortin, Daniel</au><au>Karsenti, Paul-Ludovic</au><au>Harvey, Pierre D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Influence on Exciton Migration and Singlet Oxygen Photosensitization in Porphyrinic Metal–Organic Coordination Networks</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2022-08-23</date><risdate>2022</risdate><volume>34</volume><issue>16</issue><spage>7242</spage><epage>7255</epage><pages>7242-7255</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>A hexagonal three-dimensional (3D) metal–organic coordination network (MOCN) [(ZnTPyP)·0.75 DMSO] n (3D Helix) and a one-dimensional (1D) coordination polymer [(ZnTPyP)·DMF] n (1D Ladder) (ZnTPyP = 5,10,15,20-tetrakis­(4-pyridyl)­porphyrinatozinc­(II)) are prepared and their photophysical properties are investigated to assess their ability to promote efficient exciton energy migration through singlet–singlet annihilation processes and to photosensitize singlet oxygen (1O2(g)). The presence and absence of annihilation in 3D Helix and 1D Ladder, respectively, are indicative of their ability to efficiently promote exciton migration. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were used to demonstrate the presence of interporphyrin couplings in the 3D Helix structure. Using Forster’s theory of energy transfer, the relative efficiencies of exciton migration across the bulk were correlated with the structural parameter κ2/r 6, indicative of the relative orientations and distance between the donor and acceptor. Concurrently, based on the magnitude of 1O2(g) phosphorescence (1280 nm), it was noted that 3D Helix photosensitizes 1O2(g) more efficiently than 1D Ladder (by roughly 1 order of magnitude). During this study, a new two-dimensional (2D)-MOCN was prepared, 2D Grid [(ZnTPyP)·4CHCl3] n , but weak Zn···N interactions and evaporation of CHCl3 transformed 2D Grid into a multiphasic mixture (ZnTPyP Morph) containing both 3D Helix and other 1D ladder-like species.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.2c01105</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6809-1629</orcidid><orcidid>https://orcid.org/0000-0003-2241-1030</orcidid><orcidid>https://orcid.org/0000-0001-5215-8908</orcidid><orcidid>https://orcid.org/0000-0002-0223-6362</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2022-08, Vol.34 (16), p.7242-7255
issn 0897-4756
1520-5002
language eng
recordid cdi_hal_primary_oai_HAL_hal_04632369v1
source American Chemical Society Journals
subjects Chemical Sciences
title Structural Influence on Exciton Migration and Singlet Oxygen Photosensitization in Porphyrinic Metal–Organic Coordination Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A05%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Influence%20on%20Exciton%20Migration%20and%20Singlet%20Oxygen%20Photosensitization%20in%20Porphyrinic%20Metal%E2%80%93Organic%20Coordination%20Networks&rft.jtitle=Chemistry%20of%20materials&rft.au=Asselin,%20Paul&rft.date=2022-08-23&rft.volume=34&rft.issue=16&rft.spage=7242&rft.epage=7255&rft.pages=7242-7255&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.2c01105&rft_dat=%3Cacs_hal_p%3Ea361054729%3C/acs_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true