Ultrafast Laser‐Induced Sub‐100 nm Structures on Tungsten Surfaces: Stretched Liquid Dynamics Insights
The origin of high‐spatial‐frequency laser‐induced periodic surface structures, known as HSFLs, has always been a controversial topic. HSFLs of sub‐100 nm periodicity and sub‐20 nm amplitude are generated on tungsten by Ti:sapphire femtosecond laser irradiation under four different processing enviro...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2024-08, Vol.221 (15), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 15 |
container_start_page | |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 221 |
creator | Dominic, Priya Iabbaden, Djafar Bourquard, Florent Reynaud, Stéphanie Weck, Arnaud Colombier, Jean-Philippe Garrelie, Florence |
description | The origin of high‐spatial‐frequency laser‐induced periodic surface structures, known as HSFLs, has always been a controversial topic. HSFLs of sub‐100 nm periodicity and sub‐20 nm amplitude are generated on tungsten by Ti:sapphire femtosecond laser irradiation under four different processing environments (ambient, air at 10 mbar, Ar at 10 mbar, and vacuum at 10−7 mbar). The topography and subtopography analysis together with two‐temperature model–molecular dynamics simulations reveal that HSFLs formation originates from laser‐induced thermal stresses, implying both surface tension and tensile forces are involved. The experimental observation of subsurface cavitation confirms a hydrodynamics‐based origin for these nanostructures.
The high‐spatial‐frequency laser‐induced nanostructures (HSFLs), of sub‐100 nm periodicity and sub‐20 nm amplitude are generated on tungsten by Ti:Sapphire femtosecond laser irradiation under four different processing environments. The topography and sub‐topography analysis together with two temperature model–molecular dynamics (TTM–MD) simulations reveal that their formation originates from laser‐induced thermal stresses, implying both surface tension and tensile forces. |
doi_str_mv | 10.1002/pssa.202300703 |
format | Article |
fullrecord | <record><control><sourceid>wiley_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04621667v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PSSA202300703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3183-4aa2cb5e76d0c3b87c63e9c83dfe2fd6196b94465d4242360258877a336080943</originalsourceid><addsrcrecordid>eNqFkLtOw0AQRVcIJEKgpXZL4TD78Nqmi3glkiWQnNSr9XqdGDlO2LFB6dLS8Y35EmwFhZJq7ozOmeISck1hRAHY7QZRjxgwDhACPyEDGknmS07j02MGOCcXiG8AIhAhHZBqXjVOFxobL9Fo3X73Pa3z1tjcS9us27rX-91XvfLSxrWmaZ1Fb117s7ZeYGPrjnKFNhbvesA2ZtmZSfnelrn3sK31qjToTWssF8sGL8lZoSu0V79zSOZPj7P7iZ-8PE_vx4lvOI24L7RmJgtsKHMwPItCI7mNTcTzwrIilzSWWSyEDHLBBOMSWBBFYah5FyOIBR-Sm8Pfpa7UxpUr7bZqrUs1GSeqv4GQjEoZftCOHR1Y49aIzhZHgYLqe1V9r-rYayfEB-GzrOz2H1q9pun4z_0Be39-0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultrafast Laser‐Induced Sub‐100 nm Structures on Tungsten Surfaces: Stretched Liquid Dynamics Insights</title><source>Wiley Online Library All Journals</source><creator>Dominic, Priya ; Iabbaden, Djafar ; Bourquard, Florent ; Reynaud, Stéphanie ; Weck, Arnaud ; Colombier, Jean-Philippe ; Garrelie, Florence</creator><creatorcontrib>Dominic, Priya ; Iabbaden, Djafar ; Bourquard, Florent ; Reynaud, Stéphanie ; Weck, Arnaud ; Colombier, Jean-Philippe ; Garrelie, Florence</creatorcontrib><description>The origin of high‐spatial‐frequency laser‐induced periodic surface structures, known as HSFLs, has always been a controversial topic. HSFLs of sub‐100 nm periodicity and sub‐20 nm amplitude are generated on tungsten by Ti:sapphire femtosecond laser irradiation under four different processing environments (ambient, air at 10 mbar, Ar at 10 mbar, and vacuum at 10−7 mbar). The topography and subtopography analysis together with two‐temperature model–molecular dynamics simulations reveal that HSFLs formation originates from laser‐induced thermal stresses, implying both surface tension and tensile forces are involved. The experimental observation of subsurface cavitation confirms a hydrodynamics‐based origin for these nanostructures.
The high‐spatial‐frequency laser‐induced nanostructures (HSFLs), of sub‐100 nm periodicity and sub‐20 nm amplitude are generated on tungsten by Ti:Sapphire femtosecond laser irradiation under four different processing environments. The topography and sub‐topography analysis together with two temperature model–molecular dynamics (TTM–MD) simulations reveal that their formation originates from laser‐induced thermal stresses, implying both surface tension and tensile forces.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202300703</identifier><language>eng</language><publisher>Wiley</publisher><subject>Condensed Matter ; Engineering Sciences ; femtosecond laser ; high-spatial-frequency laser-induced periodic surface structures ; hydrodynamic instability ; Materials Science ; Micro and nanotechnologies ; Microelectronics ; Optics ; Photonic ; Physics ; subsurface voids</subject><ispartof>Physica status solidi. A, Applications and materials science, 2024-08, Vol.221 (15), p.n/a</ispartof><rights>2023 The Authors. physica status solidi (a) applications and materials science published by Wiley‐VCH GmbH</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3183-4aa2cb5e76d0c3b87c63e9c83dfe2fd6196b94465d4242360258877a336080943</cites><orcidid>0000-0001-8768-4449 ; 0000-0001-8462-7019 ; 0000-0003-3534-3479 ; 0000-0002-7561-5830 ; 0000-0001-9975-6075 ; 0000-0003-4557-8677 ; 0000-0002-1019-1600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202300703$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202300703$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04621667$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dominic, Priya</creatorcontrib><creatorcontrib>Iabbaden, Djafar</creatorcontrib><creatorcontrib>Bourquard, Florent</creatorcontrib><creatorcontrib>Reynaud, Stéphanie</creatorcontrib><creatorcontrib>Weck, Arnaud</creatorcontrib><creatorcontrib>Colombier, Jean-Philippe</creatorcontrib><creatorcontrib>Garrelie, Florence</creatorcontrib><title>Ultrafast Laser‐Induced Sub‐100 nm Structures on Tungsten Surfaces: Stretched Liquid Dynamics Insights</title><title>Physica status solidi. A, Applications and materials science</title><description>The origin of high‐spatial‐frequency laser‐induced periodic surface structures, known as HSFLs, has always been a controversial topic. HSFLs of sub‐100 nm periodicity and sub‐20 nm amplitude are generated on tungsten by Ti:sapphire femtosecond laser irradiation under four different processing environments (ambient, air at 10 mbar, Ar at 10 mbar, and vacuum at 10−7 mbar). The topography and subtopography analysis together with two‐temperature model–molecular dynamics simulations reveal that HSFLs formation originates from laser‐induced thermal stresses, implying both surface tension and tensile forces are involved. The experimental observation of subsurface cavitation confirms a hydrodynamics‐based origin for these nanostructures.
The high‐spatial‐frequency laser‐induced nanostructures (HSFLs), of sub‐100 nm periodicity and sub‐20 nm amplitude are generated on tungsten by Ti:Sapphire femtosecond laser irradiation under four different processing environments. The topography and sub‐topography analysis together with two temperature model–molecular dynamics (TTM–MD) simulations reveal that their formation originates from laser‐induced thermal stresses, implying both surface tension and tensile forces.</description><subject>Condensed Matter</subject><subject>Engineering Sciences</subject><subject>femtosecond laser</subject><subject>high-spatial-frequency laser-induced periodic surface structures</subject><subject>hydrodynamic instability</subject><subject>Materials Science</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Optics</subject><subject>Photonic</subject><subject>Physics</subject><subject>subsurface voids</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkLtOw0AQRVcIJEKgpXZL4TD78Nqmi3glkiWQnNSr9XqdGDlO2LFB6dLS8Y35EmwFhZJq7ozOmeISck1hRAHY7QZRjxgwDhACPyEDGknmS07j02MGOCcXiG8AIhAhHZBqXjVOFxobL9Fo3X73Pa3z1tjcS9us27rX-91XvfLSxrWmaZ1Fb117s7ZeYGPrjnKFNhbvesA2ZtmZSfnelrn3sK31qjToTWssF8sGL8lZoSu0V79zSOZPj7P7iZ-8PE_vx4lvOI24L7RmJgtsKHMwPItCI7mNTcTzwrIilzSWWSyEDHLBBOMSWBBFYah5FyOIBR-Sm8Pfpa7UxpUr7bZqrUs1GSeqv4GQjEoZftCOHR1Y49aIzhZHgYLqe1V9r-rYayfEB-GzrOz2H1q9pun4z_0Be39-0Q</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Dominic, Priya</creator><creator>Iabbaden, Djafar</creator><creator>Bourquard, Florent</creator><creator>Reynaud, Stéphanie</creator><creator>Weck, Arnaud</creator><creator>Colombier, Jean-Philippe</creator><creator>Garrelie, Florence</creator><general>Wiley</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8768-4449</orcidid><orcidid>https://orcid.org/0000-0001-8462-7019</orcidid><orcidid>https://orcid.org/0000-0003-3534-3479</orcidid><orcidid>https://orcid.org/0000-0002-7561-5830</orcidid><orcidid>https://orcid.org/0000-0001-9975-6075</orcidid><orcidid>https://orcid.org/0000-0003-4557-8677</orcidid><orcidid>https://orcid.org/0000-0002-1019-1600</orcidid></search><sort><creationdate>202408</creationdate><title>Ultrafast Laser‐Induced Sub‐100 nm Structures on Tungsten Surfaces: Stretched Liquid Dynamics Insights</title><author>Dominic, Priya ; Iabbaden, Djafar ; Bourquard, Florent ; Reynaud, Stéphanie ; Weck, Arnaud ; Colombier, Jean-Philippe ; Garrelie, Florence</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3183-4aa2cb5e76d0c3b87c63e9c83dfe2fd6196b94465d4242360258877a336080943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Condensed Matter</topic><topic>Engineering Sciences</topic><topic>femtosecond laser</topic><topic>high-spatial-frequency laser-induced periodic surface structures</topic><topic>hydrodynamic instability</topic><topic>Materials Science</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Optics</topic><topic>Photonic</topic><topic>Physics</topic><topic>subsurface voids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dominic, Priya</creatorcontrib><creatorcontrib>Iabbaden, Djafar</creatorcontrib><creatorcontrib>Bourquard, Florent</creatorcontrib><creatorcontrib>Reynaud, Stéphanie</creatorcontrib><creatorcontrib>Weck, Arnaud</creatorcontrib><creatorcontrib>Colombier, Jean-Philippe</creatorcontrib><creatorcontrib>Garrelie, Florence</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dominic, Priya</au><au>Iabbaden, Djafar</au><au>Bourquard, Florent</au><au>Reynaud, Stéphanie</au><au>Weck, Arnaud</au><au>Colombier, Jean-Philippe</au><au>Garrelie, Florence</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast Laser‐Induced Sub‐100 nm Structures on Tungsten Surfaces: Stretched Liquid Dynamics Insights</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2024-08</date><risdate>2024</risdate><volume>221</volume><issue>15</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>The origin of high‐spatial‐frequency laser‐induced periodic surface structures, known as HSFLs, has always been a controversial topic. HSFLs of sub‐100 nm periodicity and sub‐20 nm amplitude are generated on tungsten by Ti:sapphire femtosecond laser irradiation under four different processing environments (ambient, air at 10 mbar, Ar at 10 mbar, and vacuum at 10−7 mbar). The topography and subtopography analysis together with two‐temperature model–molecular dynamics simulations reveal that HSFLs formation originates from laser‐induced thermal stresses, implying both surface tension and tensile forces are involved. The experimental observation of subsurface cavitation confirms a hydrodynamics‐based origin for these nanostructures.
The high‐spatial‐frequency laser‐induced nanostructures (HSFLs), of sub‐100 nm periodicity and sub‐20 nm amplitude are generated on tungsten by Ti:Sapphire femtosecond laser irradiation under four different processing environments. The topography and sub‐topography analysis together with two temperature model–molecular dynamics (TTM–MD) simulations reveal that their formation originates from laser‐induced thermal stresses, implying both surface tension and tensile forces.</abstract><pub>Wiley</pub><doi>10.1002/pssa.202300703</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8768-4449</orcidid><orcidid>https://orcid.org/0000-0001-8462-7019</orcidid><orcidid>https://orcid.org/0000-0003-3534-3479</orcidid><orcidid>https://orcid.org/0000-0002-7561-5830</orcidid><orcidid>https://orcid.org/0000-0001-9975-6075</orcidid><orcidid>https://orcid.org/0000-0003-4557-8677</orcidid><orcidid>https://orcid.org/0000-0002-1019-1600</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2024-08, Vol.221 (15), p.n/a |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04621667v1 |
source | Wiley Online Library All Journals |
subjects | Condensed Matter Engineering Sciences femtosecond laser high-spatial-frequency laser-induced periodic surface structures hydrodynamic instability Materials Science Micro and nanotechnologies Microelectronics Optics Photonic Physics subsurface voids |
title | Ultrafast Laser‐Induced Sub‐100 nm Structures on Tungsten Surfaces: Stretched Liquid Dynamics Insights |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A09%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20Laser%E2%80%90Induced%20Sub%E2%80%90100%E2%80%89nm%20Structures%20on%20Tungsten%20Surfaces:%20Stretched%20Liquid%20Dynamics%20Insights&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Dominic,%20Priya&rft.date=2024-08&rft.volume=221&rft.issue=15&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202300703&rft_dat=%3Cwiley_hal_p%3EPSSA202300703%3C/wiley_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |