Ultrafast Laser‐Induced Sub‐100 nm Structures on Tungsten Surfaces: Stretched Liquid Dynamics Insights

The origin of high‐spatial‐frequency laser‐induced periodic surface structures, known as HSFLs, has always been a controversial topic. HSFLs of sub‐100 nm periodicity and sub‐20 nm amplitude are generated on tungsten by Ti:sapphire femtosecond laser irradiation under four different processing enviro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2024-08, Vol.221 (15), p.n/a
Hauptverfasser: Dominic, Priya, Iabbaden, Djafar, Bourquard, Florent, Reynaud, Stéphanie, Weck, Arnaud, Colombier, Jean-Philippe, Garrelie, Florence
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 15
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 221
creator Dominic, Priya
Iabbaden, Djafar
Bourquard, Florent
Reynaud, Stéphanie
Weck, Arnaud
Colombier, Jean-Philippe
Garrelie, Florence
description The origin of high‐spatial‐frequency laser‐induced periodic surface structures, known as HSFLs, has always been a controversial topic. HSFLs of sub‐100 nm periodicity and sub‐20 nm amplitude are generated on tungsten by Ti:sapphire femtosecond laser irradiation under four different processing environments (ambient, air at 10 mbar, Ar at 10 mbar, and vacuum at 10−7 mbar). The topography and subtopography analysis together with two‐temperature model–molecular dynamics simulations reveal that HSFLs formation originates from laser‐induced thermal stresses, implying both surface tension and tensile forces are involved. The experimental observation of subsurface cavitation confirms a hydrodynamics‐based origin for these nanostructures. The high‐spatial‐frequency laser‐induced nanostructures (HSFLs), of sub‐100 nm periodicity and sub‐20 nm amplitude are generated on tungsten by Ti:Sapphire femtosecond laser irradiation under four different processing environments. The topography and sub‐topography analysis together with two temperature model–molecular dynamics (TTM–MD) simulations reveal that their formation originates from laser‐induced thermal stresses, implying both surface tension and tensile forces.
doi_str_mv 10.1002/pssa.202300703
format Article
fullrecord <record><control><sourceid>wiley_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04621667v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PSSA202300703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3183-4aa2cb5e76d0c3b87c63e9c83dfe2fd6196b94465d4242360258877a336080943</originalsourceid><addsrcrecordid>eNqFkLtOw0AQRVcIJEKgpXZL4TD78Nqmi3glkiWQnNSr9XqdGDlO2LFB6dLS8Y35EmwFhZJq7ozOmeISck1hRAHY7QZRjxgwDhACPyEDGknmS07j02MGOCcXiG8AIhAhHZBqXjVOFxobL9Fo3X73Pa3z1tjcS9us27rX-91XvfLSxrWmaZ1Fb117s7ZeYGPrjnKFNhbvesA2ZtmZSfnelrn3sK31qjToTWssF8sGL8lZoSu0V79zSOZPj7P7iZ-8PE_vx4lvOI24L7RmJgtsKHMwPItCI7mNTcTzwrIilzSWWSyEDHLBBOMSWBBFYah5FyOIBR-Sm8Pfpa7UxpUr7bZqrUs1GSeqv4GQjEoZftCOHR1Y49aIzhZHgYLqe1V9r-rYayfEB-GzrOz2H1q9pun4z_0Be39-0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultrafast Laser‐Induced Sub‐100 nm Structures on Tungsten Surfaces: Stretched Liquid Dynamics Insights</title><source>Wiley Online Library All Journals</source><creator>Dominic, Priya ; Iabbaden, Djafar ; Bourquard, Florent ; Reynaud, Stéphanie ; Weck, Arnaud ; Colombier, Jean-Philippe ; Garrelie, Florence</creator><creatorcontrib>Dominic, Priya ; Iabbaden, Djafar ; Bourquard, Florent ; Reynaud, Stéphanie ; Weck, Arnaud ; Colombier, Jean-Philippe ; Garrelie, Florence</creatorcontrib><description>The origin of high‐spatial‐frequency laser‐induced periodic surface structures, known as HSFLs, has always been a controversial topic. HSFLs of sub‐100 nm periodicity and sub‐20 nm amplitude are generated on tungsten by Ti:sapphire femtosecond laser irradiation under four different processing environments (ambient, air at 10 mbar, Ar at 10 mbar, and vacuum at 10−7 mbar). The topography and subtopography analysis together with two‐temperature model–molecular dynamics simulations reveal that HSFLs formation originates from laser‐induced thermal stresses, implying both surface tension and tensile forces are involved. The experimental observation of subsurface cavitation confirms a hydrodynamics‐based origin for these nanostructures. The high‐spatial‐frequency laser‐induced nanostructures (HSFLs), of sub‐100 nm periodicity and sub‐20 nm amplitude are generated on tungsten by Ti:Sapphire femtosecond laser irradiation under four different processing environments. The topography and sub‐topography analysis together with two temperature model–molecular dynamics (TTM–MD) simulations reveal that their formation originates from laser‐induced thermal stresses, implying both surface tension and tensile forces.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202300703</identifier><language>eng</language><publisher>Wiley</publisher><subject>Condensed Matter ; Engineering Sciences ; femtosecond laser ; high-spatial-frequency laser-induced periodic surface structures ; hydrodynamic instability ; Materials Science ; Micro and nanotechnologies ; Microelectronics ; Optics ; Photonic ; Physics ; subsurface voids</subject><ispartof>Physica status solidi. A, Applications and materials science, 2024-08, Vol.221 (15), p.n/a</ispartof><rights>2023 The Authors. physica status solidi (a) applications and materials science published by Wiley‐VCH GmbH</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3183-4aa2cb5e76d0c3b87c63e9c83dfe2fd6196b94465d4242360258877a336080943</cites><orcidid>0000-0001-8768-4449 ; 0000-0001-8462-7019 ; 0000-0003-3534-3479 ; 0000-0002-7561-5830 ; 0000-0001-9975-6075 ; 0000-0003-4557-8677 ; 0000-0002-1019-1600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202300703$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202300703$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04621667$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dominic, Priya</creatorcontrib><creatorcontrib>Iabbaden, Djafar</creatorcontrib><creatorcontrib>Bourquard, Florent</creatorcontrib><creatorcontrib>Reynaud, Stéphanie</creatorcontrib><creatorcontrib>Weck, Arnaud</creatorcontrib><creatorcontrib>Colombier, Jean-Philippe</creatorcontrib><creatorcontrib>Garrelie, Florence</creatorcontrib><title>Ultrafast Laser‐Induced Sub‐100 nm Structures on Tungsten Surfaces: Stretched Liquid Dynamics Insights</title><title>Physica status solidi. A, Applications and materials science</title><description>The origin of high‐spatial‐frequency laser‐induced periodic surface structures, known as HSFLs, has always been a controversial topic. HSFLs of sub‐100 nm periodicity and sub‐20 nm amplitude are generated on tungsten by Ti:sapphire femtosecond laser irradiation under four different processing environments (ambient, air at 10 mbar, Ar at 10 mbar, and vacuum at 10−7 mbar). The topography and subtopography analysis together with two‐temperature model–molecular dynamics simulations reveal that HSFLs formation originates from laser‐induced thermal stresses, implying both surface tension and tensile forces are involved. The experimental observation of subsurface cavitation confirms a hydrodynamics‐based origin for these nanostructures. The high‐spatial‐frequency laser‐induced nanostructures (HSFLs), of sub‐100 nm periodicity and sub‐20 nm amplitude are generated on tungsten by Ti:Sapphire femtosecond laser irradiation under four different processing environments. The topography and sub‐topography analysis together with two temperature model–molecular dynamics (TTM–MD) simulations reveal that their formation originates from laser‐induced thermal stresses, implying both surface tension and tensile forces.</description><subject>Condensed Matter</subject><subject>Engineering Sciences</subject><subject>femtosecond laser</subject><subject>high-spatial-frequency laser-induced periodic surface structures</subject><subject>hydrodynamic instability</subject><subject>Materials Science</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Optics</subject><subject>Photonic</subject><subject>Physics</subject><subject>subsurface voids</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkLtOw0AQRVcIJEKgpXZL4TD78Nqmi3glkiWQnNSr9XqdGDlO2LFB6dLS8Y35EmwFhZJq7ozOmeISck1hRAHY7QZRjxgwDhACPyEDGknmS07j02MGOCcXiG8AIhAhHZBqXjVOFxobL9Fo3X73Pa3z1tjcS9us27rX-91XvfLSxrWmaZ1Fb117s7ZeYGPrjnKFNhbvesA2ZtmZSfnelrn3sK31qjToTWssF8sGL8lZoSu0V79zSOZPj7P7iZ-8PE_vx4lvOI24L7RmJgtsKHMwPItCI7mNTcTzwrIilzSWWSyEDHLBBOMSWBBFYah5FyOIBR-Sm8Pfpa7UxpUr7bZqrUs1GSeqv4GQjEoZftCOHR1Y49aIzhZHgYLqe1V9r-rYayfEB-GzrOz2H1q9pun4z_0Be39-0Q</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Dominic, Priya</creator><creator>Iabbaden, Djafar</creator><creator>Bourquard, Florent</creator><creator>Reynaud, Stéphanie</creator><creator>Weck, Arnaud</creator><creator>Colombier, Jean-Philippe</creator><creator>Garrelie, Florence</creator><general>Wiley</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8768-4449</orcidid><orcidid>https://orcid.org/0000-0001-8462-7019</orcidid><orcidid>https://orcid.org/0000-0003-3534-3479</orcidid><orcidid>https://orcid.org/0000-0002-7561-5830</orcidid><orcidid>https://orcid.org/0000-0001-9975-6075</orcidid><orcidid>https://orcid.org/0000-0003-4557-8677</orcidid><orcidid>https://orcid.org/0000-0002-1019-1600</orcidid></search><sort><creationdate>202408</creationdate><title>Ultrafast Laser‐Induced Sub‐100 nm Structures on Tungsten Surfaces: Stretched Liquid Dynamics Insights</title><author>Dominic, Priya ; Iabbaden, Djafar ; Bourquard, Florent ; Reynaud, Stéphanie ; Weck, Arnaud ; Colombier, Jean-Philippe ; Garrelie, Florence</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3183-4aa2cb5e76d0c3b87c63e9c83dfe2fd6196b94465d4242360258877a336080943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Condensed Matter</topic><topic>Engineering Sciences</topic><topic>femtosecond laser</topic><topic>high-spatial-frequency laser-induced periodic surface structures</topic><topic>hydrodynamic instability</topic><topic>Materials Science</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Optics</topic><topic>Photonic</topic><topic>Physics</topic><topic>subsurface voids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dominic, Priya</creatorcontrib><creatorcontrib>Iabbaden, Djafar</creatorcontrib><creatorcontrib>Bourquard, Florent</creatorcontrib><creatorcontrib>Reynaud, Stéphanie</creatorcontrib><creatorcontrib>Weck, Arnaud</creatorcontrib><creatorcontrib>Colombier, Jean-Philippe</creatorcontrib><creatorcontrib>Garrelie, Florence</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dominic, Priya</au><au>Iabbaden, Djafar</au><au>Bourquard, Florent</au><au>Reynaud, Stéphanie</au><au>Weck, Arnaud</au><au>Colombier, Jean-Philippe</au><au>Garrelie, Florence</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast Laser‐Induced Sub‐100 nm Structures on Tungsten Surfaces: Stretched Liquid Dynamics Insights</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2024-08</date><risdate>2024</risdate><volume>221</volume><issue>15</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>The origin of high‐spatial‐frequency laser‐induced periodic surface structures, known as HSFLs, has always been a controversial topic. HSFLs of sub‐100 nm periodicity and sub‐20 nm amplitude are generated on tungsten by Ti:sapphire femtosecond laser irradiation under four different processing environments (ambient, air at 10 mbar, Ar at 10 mbar, and vacuum at 10−7 mbar). The topography and subtopography analysis together with two‐temperature model–molecular dynamics simulations reveal that HSFLs formation originates from laser‐induced thermal stresses, implying both surface tension and tensile forces are involved. The experimental observation of subsurface cavitation confirms a hydrodynamics‐based origin for these nanostructures. The high‐spatial‐frequency laser‐induced nanostructures (HSFLs), of sub‐100 nm periodicity and sub‐20 nm amplitude are generated on tungsten by Ti:Sapphire femtosecond laser irradiation under four different processing environments. The topography and sub‐topography analysis together with two temperature model–molecular dynamics (TTM–MD) simulations reveal that their formation originates from laser‐induced thermal stresses, implying both surface tension and tensile forces.</abstract><pub>Wiley</pub><doi>10.1002/pssa.202300703</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8768-4449</orcidid><orcidid>https://orcid.org/0000-0001-8462-7019</orcidid><orcidid>https://orcid.org/0000-0003-3534-3479</orcidid><orcidid>https://orcid.org/0000-0002-7561-5830</orcidid><orcidid>https://orcid.org/0000-0001-9975-6075</orcidid><orcidid>https://orcid.org/0000-0003-4557-8677</orcidid><orcidid>https://orcid.org/0000-0002-1019-1600</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2024-08, Vol.221 (15), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_hal_primary_oai_HAL_hal_04621667v1
source Wiley Online Library All Journals
subjects Condensed Matter
Engineering Sciences
femtosecond laser
high-spatial-frequency laser-induced periodic surface structures
hydrodynamic instability
Materials Science
Micro and nanotechnologies
Microelectronics
Optics
Photonic
Physics
subsurface voids
title Ultrafast Laser‐Induced Sub‐100 nm Structures on Tungsten Surfaces: Stretched Liquid Dynamics Insights
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A09%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20Laser%E2%80%90Induced%20Sub%E2%80%90100%E2%80%89nm%20Structures%20on%20Tungsten%20Surfaces:%20Stretched%20Liquid%20Dynamics%20Insights&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Dominic,%20Priya&rft.date=2024-08&rft.volume=221&rft.issue=15&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202300703&rft_dat=%3Cwiley_hal_p%3EPSSA202300703%3C/wiley_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true