Coordination Variations within Binuclear Copper Dioxygen-Derived (Hydro)Peroxo and Superoxo Species; Influences upon Thermodynamic and Electronic Properties

Copper ion is a versatile and ubiquitous facilitator of redox chemical and biochemical processes. These include the binding of molecular oxygen to copper­(I) complexes where it undergoes stepwise reduction-protonation. A detailed understanding of thermodynamic relationships between such reduced/prot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2024-05, Vol.146 (19), p.13066-13082
Hauptverfasser: Hota, Pradip Kumar, Jose, Anex, Panda, Sanjib, Dunietz, Eleanor M., Herzog, Austin E., Wojcik, Laurianne, Le Poul, Nicolas, Belle, Catherine, Solomon, Edward I., Karlin, Kenneth D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13082
container_issue 19
container_start_page 13066
container_title Journal of the American Chemical Society
container_volume 146
creator Hota, Pradip Kumar
Jose, Anex
Panda, Sanjib
Dunietz, Eleanor M.
Herzog, Austin E.
Wojcik, Laurianne
Le Poul, Nicolas
Belle, Catherine
Solomon, Edward I.
Karlin, Kenneth D.
description Copper ion is a versatile and ubiquitous facilitator of redox chemical and biochemical processes. These include the binding of molecular oxygen to copper­(I) complexes where it undergoes stepwise reduction-protonation. A detailed understanding of thermodynamic relationships between such reduced/protonated states is key to elucidate the fundamentals of the chemical/biochemical processes involved. The dicopper­(I) complex [CuI 2(BPMPO–)]1+ {BPMPOH = 2,6-bis­{[(bis­(2-pyridylmethyl)­amino]­methyl}-4-methylphenol)} undergoes cryogenic dioxygen addition; further manipulations in 2-methyltetrahydrofuran generate dicopper­(II) peroxo [CuII 2(BPMPO–)­(O2 2–)]1+, hydroperoxo [CuII 2(BPMPO–)­(−OOH)]2+, and superoxo [CuII 2(BPMPO–)­(O2 •–)]2+ species, characterized by UV–vis, resonance Raman and electron paramagnetic resonance (EPR) spectroscopies, and cold spray ionization mass spectrometry. An unexpected EPR spectrum for [CuII 2(BPMPO–)­(O2 •–)]2+ is explained by the analysis of its exchange-coupled three-spin frustrated system and DFT calculations. A redox equilibrium, [CuII 2(BPMPO–)­(O2 2–)]1+ ⇄ [CuII 2(BPMPO–)­(O2 •–)]2+, is established utilizing Me8Fc+/Cr­(η6-C6H6)2, allowing for [CuII 2(BPMPO–)­(O2 •–)]2+/[CuII 2(BPMPO–)­(O2 2–)]1+ reduction potential calculation, E°′ = −0.44 ± 0.01 V vs Fc+/0, also confirmed by cryoelectrochemical measurements (E°′ = −0.40 ± 0.01 V). 2,6-Lutidinium triflate addition to [CuII 2(BPMPO–)­(O2 2–)]1+ produces [CuII 2(BPMPO–)­(−OOH)]2+; using a phosphazene base, an acid–base equilibrium was achieved, pK a = 22.3 ± 0.7 for [CuII 2(BPMPO–)­(−OOH)]2+. The BDFEOO–H = 80.3 ± 1.2 kcal/mol, as calculated for [CuII 2(BPMPO–)­(−OOH)]2+; this is further substantiated by H atom abstraction from O–H substrates by [CuII 2(BPMPO–)­(O2 •–)]2+ forming [CuII 2(BPMPO–)­(−OOH)]2+. In comparison to known analogues, the thermodynamic and spectroscopic properties of [CuII 2(BPMPO–)] O2-derived adducts can be accounted for based on chelate ring size variations built into the BPMPO– framework and the resulting enhanced CuII-ion Lewis acidity.
doi_str_mv 10.1021/jacs.3c14422
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04620656v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049717169</sourcerecordid><originalsourceid>FETCH-LOGICAL-a424t-2639c68b0474082179456681fe2102a11b973b90c169740950e1cded13d9013c3</originalsourceid><addsrcrecordid>eNptkUFP3DAQha2qqCy0t54rH0Ei1OM4TqKe6EJZpJWKBO3V8jqzXa8SO7UTYP8LP7ZedksvPdkz-t570jxCPgI7B8bh81qbeJ4bEILzN2QCBWdZAVy-JRPGGM_KSuaH5CjGdRoFr-AdOcwrWVUM5IQ8T70PjXV6sN7RnzrYl1-kj3ZYWUe_WjeaFnWgU9_3GOil9U-bX-iySwz2ARt6Mts0wZ_eYvBPnmrX0Lux3w13PRqL8Qu9cct2RGcw0rFPOfcrDJ1vNk531rxorlo0Q_AujbfBJ_2QhO_JwVK3ET_s32Py49vV_XSWzb9f30wv5pkWXAwZl3ltZLVgohSs4lDWopCygiXydCENsKjLfFEzA7JORF0wBNNgA3lTM8hNfkxOd74r3ao-2E6HjfLaqtnFXG13TEjOZCEfILEnO7YP_veIcVCdjQbbVjv0Y1Q5E3UJZYpK6NkONcHHGHD56g1MbbtT2-7UvruEf9o7j4sOm1f4b1n_oreqtR-DS0f5v9cfrtijAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049717169</pqid></control><display><type>article</type><title>Coordination Variations within Binuclear Copper Dioxygen-Derived (Hydro)Peroxo and Superoxo Species; Influences upon Thermodynamic and Electronic Properties</title><source>ACS Publications</source><creator>Hota, Pradip Kumar ; Jose, Anex ; Panda, Sanjib ; Dunietz, Eleanor M. ; Herzog, Austin E. ; Wojcik, Laurianne ; Le Poul, Nicolas ; Belle, Catherine ; Solomon, Edward I. ; Karlin, Kenneth D.</creator><creatorcontrib>Hota, Pradip Kumar ; Jose, Anex ; Panda, Sanjib ; Dunietz, Eleanor M. ; Herzog, Austin E. ; Wojcik, Laurianne ; Le Poul, Nicolas ; Belle, Catherine ; Solomon, Edward I. ; Karlin, Kenneth D.</creatorcontrib><description>Copper ion is a versatile and ubiquitous facilitator of redox chemical and biochemical processes. These include the binding of molecular oxygen to copper­(I) complexes where it undergoes stepwise reduction-protonation. A detailed understanding of thermodynamic relationships between such reduced/protonated states is key to elucidate the fundamentals of the chemical/biochemical processes involved. The dicopper­(I) complex [CuI 2(BPMPO–)]1+ {BPMPOH = 2,6-bis­{[(bis­(2-pyridylmethyl)­amino]­methyl}-4-methylphenol)} undergoes cryogenic dioxygen addition; further manipulations in 2-methyltetrahydrofuran generate dicopper­(II) peroxo [CuII 2(BPMPO–)­(O2 2–)]1+, hydroperoxo [CuII 2(BPMPO–)­(−OOH)]2+, and superoxo [CuII 2(BPMPO–)­(O2 •–)]2+ species, characterized by UV–vis, resonance Raman and electron paramagnetic resonance (EPR) spectroscopies, and cold spray ionization mass spectrometry. An unexpected EPR spectrum for [CuII 2(BPMPO–)­(O2 •–)]2+ is explained by the analysis of its exchange-coupled three-spin frustrated system and DFT calculations. A redox equilibrium, [CuII 2(BPMPO–)­(O2 2–)]1+ ⇄ [CuII 2(BPMPO–)­(O2 •–)]2+, is established utilizing Me8Fc+/Cr­(η6-C6H6)2, allowing for [CuII 2(BPMPO–)­(O2 •–)]2+/[CuII 2(BPMPO–)­(O2 2–)]1+ reduction potential calculation, E°′ = −0.44 ± 0.01 V vs Fc+/0, also confirmed by cryoelectrochemical measurements (E°′ = −0.40 ± 0.01 V). 2,6-Lutidinium triflate addition to [CuII 2(BPMPO–)­(O2 2–)]1+ produces [CuII 2(BPMPO–)­(−OOH)]2+; using a phosphazene base, an acid–base equilibrium was achieved, pK a = 22.3 ± 0.7 for [CuII 2(BPMPO–)­(−OOH)]2+. The BDFEOO–H = 80.3 ± 1.2 kcal/mol, as calculated for [CuII 2(BPMPO–)­(−OOH)]2+; this is further substantiated by H atom abstraction from O–H substrates by [CuII 2(BPMPO–)­(O2 •–)]2+ forming [CuII 2(BPMPO–)­(−OOH)]2+. In comparison to known analogues, the thermodynamic and spectroscopic properties of [CuII 2(BPMPO–)] O2-derived adducts can be accounted for based on chelate ring size variations built into the BPMPO– framework and the resulting enhanced CuII-ion Lewis acidity.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c14422</identifier><identifier>PMID: 38688016</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemical Sciences</subject><ispartof>Journal of the American Chemical Society, 2024-05, Vol.146 (19), p.13066-13082</ispartof><rights>2024 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a424t-2639c68b0474082179456681fe2102a11b973b90c169740950e1cded13d9013c3</citedby><cites>FETCH-LOGICAL-a424t-2639c68b0474082179456681fe2102a11b973b90c169740950e1cded13d9013c3</cites><orcidid>0009-0005-0544-3825 ; 0000-0002-1502-4879 ; 0000-0002-4924-7886 ; 0000-0002-5675-7040 ; 0000-0001-6556-8009 ; 0000-0002-7897-4142 ; 0000-0002-6656-9174 ; 0000-0002-5915-3760 ; 0000-0003-0291-3199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.3c14422$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.3c14422$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27080,27928,27929,56742,56792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38688016$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-brest.fr/hal-04620656$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hota, Pradip Kumar</creatorcontrib><creatorcontrib>Jose, Anex</creatorcontrib><creatorcontrib>Panda, Sanjib</creatorcontrib><creatorcontrib>Dunietz, Eleanor M.</creatorcontrib><creatorcontrib>Herzog, Austin E.</creatorcontrib><creatorcontrib>Wojcik, Laurianne</creatorcontrib><creatorcontrib>Le Poul, Nicolas</creatorcontrib><creatorcontrib>Belle, Catherine</creatorcontrib><creatorcontrib>Solomon, Edward I.</creatorcontrib><creatorcontrib>Karlin, Kenneth D.</creatorcontrib><title>Coordination Variations within Binuclear Copper Dioxygen-Derived (Hydro)Peroxo and Superoxo Species; Influences upon Thermodynamic and Electronic Properties</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Copper ion is a versatile and ubiquitous facilitator of redox chemical and biochemical processes. These include the binding of molecular oxygen to copper­(I) complexes where it undergoes stepwise reduction-protonation. A detailed understanding of thermodynamic relationships between such reduced/protonated states is key to elucidate the fundamentals of the chemical/biochemical processes involved. The dicopper­(I) complex [CuI 2(BPMPO–)]1+ {BPMPOH = 2,6-bis­{[(bis­(2-pyridylmethyl)­amino]­methyl}-4-methylphenol)} undergoes cryogenic dioxygen addition; further manipulations in 2-methyltetrahydrofuran generate dicopper­(II) peroxo [CuII 2(BPMPO–)­(O2 2–)]1+, hydroperoxo [CuII 2(BPMPO–)­(−OOH)]2+, and superoxo [CuII 2(BPMPO–)­(O2 •–)]2+ species, characterized by UV–vis, resonance Raman and electron paramagnetic resonance (EPR) spectroscopies, and cold spray ionization mass spectrometry. An unexpected EPR spectrum for [CuII 2(BPMPO–)­(O2 •–)]2+ is explained by the analysis of its exchange-coupled three-spin frustrated system and DFT calculations. A redox equilibrium, [CuII 2(BPMPO–)­(O2 2–)]1+ ⇄ [CuII 2(BPMPO–)­(O2 •–)]2+, is established utilizing Me8Fc+/Cr­(η6-C6H6)2, allowing for [CuII 2(BPMPO–)­(O2 •–)]2+/[CuII 2(BPMPO–)­(O2 2–)]1+ reduction potential calculation, E°′ = −0.44 ± 0.01 V vs Fc+/0, also confirmed by cryoelectrochemical measurements (E°′ = −0.40 ± 0.01 V). 2,6-Lutidinium triflate addition to [CuII 2(BPMPO–)­(O2 2–)]1+ produces [CuII 2(BPMPO–)­(−OOH)]2+; using a phosphazene base, an acid–base equilibrium was achieved, pK a = 22.3 ± 0.7 for [CuII 2(BPMPO–)­(−OOH)]2+. The BDFEOO–H = 80.3 ± 1.2 kcal/mol, as calculated for [CuII 2(BPMPO–)­(−OOH)]2+; this is further substantiated by H atom abstraction from O–H substrates by [CuII 2(BPMPO–)­(O2 •–)]2+ forming [CuII 2(BPMPO–)­(−OOH)]2+. In comparison to known analogues, the thermodynamic and spectroscopic properties of [CuII 2(BPMPO–)] O2-derived adducts can be accounted for based on chelate ring size variations built into the BPMPO– framework and the resulting enhanced CuII-ion Lewis acidity.</description><subject>Chemical Sciences</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkUFP3DAQha2qqCy0t54rH0Ei1OM4TqKe6EJZpJWKBO3V8jqzXa8SO7UTYP8LP7ZedksvPdkz-t570jxCPgI7B8bh81qbeJ4bEILzN2QCBWdZAVy-JRPGGM_KSuaH5CjGdRoFr-AdOcwrWVUM5IQ8T70PjXV6sN7RnzrYl1-kj3ZYWUe_WjeaFnWgU9_3GOil9U-bX-iySwz2ARt6Mts0wZ_eYvBPnmrX0Lux3w13PRqL8Qu9cct2RGcw0rFPOfcrDJ1vNk531rxorlo0Q_AujbfBJ_2QhO_JwVK3ET_s32Py49vV_XSWzb9f30wv5pkWXAwZl3ltZLVgohSs4lDWopCygiXydCENsKjLfFEzA7JORF0wBNNgA3lTM8hNfkxOd74r3ao-2E6HjfLaqtnFXG13TEjOZCEfILEnO7YP_veIcVCdjQbbVjv0Y1Q5E3UJZYpK6NkONcHHGHD56g1MbbtT2-7UvruEf9o7j4sOm1f4b1n_oreqtR-DS0f5v9cfrtijAw</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>Hota, Pradip Kumar</creator><creator>Jose, Anex</creator><creator>Panda, Sanjib</creator><creator>Dunietz, Eleanor M.</creator><creator>Herzog, Austin E.</creator><creator>Wojcik, Laurianne</creator><creator>Le Poul, Nicolas</creator><creator>Belle, Catherine</creator><creator>Solomon, Edward I.</creator><creator>Karlin, Kenneth D.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0009-0005-0544-3825</orcidid><orcidid>https://orcid.org/0000-0002-1502-4879</orcidid><orcidid>https://orcid.org/0000-0002-4924-7886</orcidid><orcidid>https://orcid.org/0000-0002-5675-7040</orcidid><orcidid>https://orcid.org/0000-0001-6556-8009</orcidid><orcidid>https://orcid.org/0000-0002-7897-4142</orcidid><orcidid>https://orcid.org/0000-0002-6656-9174</orcidid><orcidid>https://orcid.org/0000-0002-5915-3760</orcidid><orcidid>https://orcid.org/0000-0003-0291-3199</orcidid></search><sort><creationdate>20240515</creationdate><title>Coordination Variations within Binuclear Copper Dioxygen-Derived (Hydro)Peroxo and Superoxo Species; Influences upon Thermodynamic and Electronic Properties</title><author>Hota, Pradip Kumar ; Jose, Anex ; Panda, Sanjib ; Dunietz, Eleanor M. ; Herzog, Austin E. ; Wojcik, Laurianne ; Le Poul, Nicolas ; Belle, Catherine ; Solomon, Edward I. ; Karlin, Kenneth D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a424t-2639c68b0474082179456681fe2102a11b973b90c169740950e1cded13d9013c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hota, Pradip Kumar</creatorcontrib><creatorcontrib>Jose, Anex</creatorcontrib><creatorcontrib>Panda, Sanjib</creatorcontrib><creatorcontrib>Dunietz, Eleanor M.</creatorcontrib><creatorcontrib>Herzog, Austin E.</creatorcontrib><creatorcontrib>Wojcik, Laurianne</creatorcontrib><creatorcontrib>Le Poul, Nicolas</creatorcontrib><creatorcontrib>Belle, Catherine</creatorcontrib><creatorcontrib>Solomon, Edward I.</creatorcontrib><creatorcontrib>Karlin, Kenneth D.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hota, Pradip Kumar</au><au>Jose, Anex</au><au>Panda, Sanjib</au><au>Dunietz, Eleanor M.</au><au>Herzog, Austin E.</au><au>Wojcik, Laurianne</au><au>Le Poul, Nicolas</au><au>Belle, Catherine</au><au>Solomon, Edward I.</au><au>Karlin, Kenneth D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordination Variations within Binuclear Copper Dioxygen-Derived (Hydro)Peroxo and Superoxo Species; Influences upon Thermodynamic and Electronic Properties</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-05-15</date><risdate>2024</risdate><volume>146</volume><issue>19</issue><spage>13066</spage><epage>13082</epage><pages>13066-13082</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Copper ion is a versatile and ubiquitous facilitator of redox chemical and biochemical processes. These include the binding of molecular oxygen to copper­(I) complexes where it undergoes stepwise reduction-protonation. A detailed understanding of thermodynamic relationships between such reduced/protonated states is key to elucidate the fundamentals of the chemical/biochemical processes involved. The dicopper­(I) complex [CuI 2(BPMPO–)]1+ {BPMPOH = 2,6-bis­{[(bis­(2-pyridylmethyl)­amino]­methyl}-4-methylphenol)} undergoes cryogenic dioxygen addition; further manipulations in 2-methyltetrahydrofuran generate dicopper­(II) peroxo [CuII 2(BPMPO–)­(O2 2–)]1+, hydroperoxo [CuII 2(BPMPO–)­(−OOH)]2+, and superoxo [CuII 2(BPMPO–)­(O2 •–)]2+ species, characterized by UV–vis, resonance Raman and electron paramagnetic resonance (EPR) spectroscopies, and cold spray ionization mass spectrometry. An unexpected EPR spectrum for [CuII 2(BPMPO–)­(O2 •–)]2+ is explained by the analysis of its exchange-coupled three-spin frustrated system and DFT calculations. A redox equilibrium, [CuII 2(BPMPO–)­(O2 2–)]1+ ⇄ [CuII 2(BPMPO–)­(O2 •–)]2+, is established utilizing Me8Fc+/Cr­(η6-C6H6)2, allowing for [CuII 2(BPMPO–)­(O2 •–)]2+/[CuII 2(BPMPO–)­(O2 2–)]1+ reduction potential calculation, E°′ = −0.44 ± 0.01 V vs Fc+/0, also confirmed by cryoelectrochemical measurements (E°′ = −0.40 ± 0.01 V). 2,6-Lutidinium triflate addition to [CuII 2(BPMPO–)­(O2 2–)]1+ produces [CuII 2(BPMPO–)­(−OOH)]2+; using a phosphazene base, an acid–base equilibrium was achieved, pK a = 22.3 ± 0.7 for [CuII 2(BPMPO–)­(−OOH)]2+. The BDFEOO–H = 80.3 ± 1.2 kcal/mol, as calculated for [CuII 2(BPMPO–)­(−OOH)]2+; this is further substantiated by H atom abstraction from O–H substrates by [CuII 2(BPMPO–)­(O2 •–)]2+ forming [CuII 2(BPMPO–)­(−OOH)]2+. In comparison to known analogues, the thermodynamic and spectroscopic properties of [CuII 2(BPMPO–)] O2-derived adducts can be accounted for based on chelate ring size variations built into the BPMPO– framework and the resulting enhanced CuII-ion Lewis acidity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38688016</pmid><doi>10.1021/jacs.3c14422</doi><tpages>17</tpages><orcidid>https://orcid.org/0009-0005-0544-3825</orcidid><orcidid>https://orcid.org/0000-0002-1502-4879</orcidid><orcidid>https://orcid.org/0000-0002-4924-7886</orcidid><orcidid>https://orcid.org/0000-0002-5675-7040</orcidid><orcidid>https://orcid.org/0000-0001-6556-8009</orcidid><orcidid>https://orcid.org/0000-0002-7897-4142</orcidid><orcidid>https://orcid.org/0000-0002-6656-9174</orcidid><orcidid>https://orcid.org/0000-0002-5915-3760</orcidid><orcidid>https://orcid.org/0000-0003-0291-3199</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2024-05, Vol.146 (19), p.13066-13082
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_hal_primary_oai_HAL_hal_04620656v1
source ACS Publications
subjects Chemical Sciences
title Coordination Variations within Binuclear Copper Dioxygen-Derived (Hydro)Peroxo and Superoxo Species; Influences upon Thermodynamic and Electronic Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T23%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordination%20Variations%20within%20Binuclear%20Copper%20Dioxygen-Derived%20(Hydro)Peroxo%20and%20Superoxo%20Species;%20Influences%20upon%20Thermodynamic%20and%20Electronic%20Properties&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Hota,%20Pradip%20Kumar&rft.date=2024-05-15&rft.volume=146&rft.issue=19&rft.spage=13066&rft.epage=13082&rft.pages=13066-13082&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c14422&rft_dat=%3Cproquest_hal_p%3E3049717169%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049717169&rft_id=info:pmid/38688016&rfr_iscdi=true