Coordination Variations within Binuclear Copper Dioxygen-Derived (Hydro)Peroxo and Superoxo Species; Influences upon Thermodynamic and Electronic Properties
Copper ion is a versatile and ubiquitous facilitator of redox chemical and biochemical processes. These include the binding of molecular oxygen to copper(I) complexes where it undergoes stepwise reduction-protonation. A detailed understanding of thermodynamic relationships between such reduced/prot...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2024-05, Vol.146 (19), p.13066-13082 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13082 |
---|---|
container_issue | 19 |
container_start_page | 13066 |
container_title | Journal of the American Chemical Society |
container_volume | 146 |
creator | Hota, Pradip Kumar Jose, Anex Panda, Sanjib Dunietz, Eleanor M. Herzog, Austin E. Wojcik, Laurianne Le Poul, Nicolas Belle, Catherine Solomon, Edward I. Karlin, Kenneth D. |
description | Copper ion is a versatile and ubiquitous facilitator of redox chemical and biochemical processes. These include the binding of molecular oxygen to copper(I) complexes where it undergoes stepwise reduction-protonation. A detailed understanding of thermodynamic relationships between such reduced/protonated states is key to elucidate the fundamentals of the chemical/biochemical processes involved. The dicopper(I) complex [CuI 2(BPMPO–)]1+ {BPMPOH = 2,6-bis{[(bis(2-pyridylmethyl)amino]methyl}-4-methylphenol)} undergoes cryogenic dioxygen addition; further manipulations in 2-methyltetrahydrofuran generate dicopper(II) peroxo [CuII 2(BPMPO–)(O2 2–)]1+, hydroperoxo [CuII 2(BPMPO–)(−OOH)]2+, and superoxo [CuII 2(BPMPO–)(O2 •–)]2+ species, characterized by UV–vis, resonance Raman and electron paramagnetic resonance (EPR) spectroscopies, and cold spray ionization mass spectrometry. An unexpected EPR spectrum for [CuII 2(BPMPO–)(O2 •–)]2+ is explained by the analysis of its exchange-coupled three-spin frustrated system and DFT calculations. A redox equilibrium, [CuII 2(BPMPO–)(O2 2–)]1+ ⇄ [CuII 2(BPMPO–)(O2 •–)]2+, is established utilizing Me8Fc+/Cr(η6-C6H6)2, allowing for [CuII 2(BPMPO–)(O2 •–)]2+/[CuII 2(BPMPO–)(O2 2–)]1+ reduction potential calculation, E°′ = −0.44 ± 0.01 V vs Fc+/0, also confirmed by cryoelectrochemical measurements (E°′ = −0.40 ± 0.01 V). 2,6-Lutidinium triflate addition to [CuII 2(BPMPO–)(O2 2–)]1+ produces [CuII 2(BPMPO–)(−OOH)]2+; using a phosphazene base, an acid–base equilibrium was achieved, pK a = 22.3 ± 0.7 for [CuII 2(BPMPO–)(−OOH)]2+. The BDFEOO–H = 80.3 ± 1.2 kcal/mol, as calculated for [CuII 2(BPMPO–)(−OOH)]2+; this is further substantiated by H atom abstraction from O–H substrates by [CuII 2(BPMPO–)(O2 •–)]2+ forming [CuII 2(BPMPO–)(−OOH)]2+. In comparison to known analogues, the thermodynamic and spectroscopic properties of [CuII 2(BPMPO–)] O2-derived adducts can be accounted for based on chelate ring size variations built into the BPMPO– framework and the resulting enhanced CuII-ion Lewis acidity. |
doi_str_mv | 10.1021/jacs.3c14422 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04620656v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049717169</sourcerecordid><originalsourceid>FETCH-LOGICAL-a424t-2639c68b0474082179456681fe2102a11b973b90c169740950e1cded13d9013c3</originalsourceid><addsrcrecordid>eNptkUFP3DAQha2qqCy0t54rH0Ei1OM4TqKe6EJZpJWKBO3V8jqzXa8SO7UTYP8LP7ZedksvPdkz-t570jxCPgI7B8bh81qbeJ4bEILzN2QCBWdZAVy-JRPGGM_KSuaH5CjGdRoFr-AdOcwrWVUM5IQ8T70PjXV6sN7RnzrYl1-kj3ZYWUe_WjeaFnWgU9_3GOil9U-bX-iySwz2ARt6Mts0wZ_eYvBPnmrX0Lux3w13PRqL8Qu9cct2RGcw0rFPOfcrDJ1vNk531rxorlo0Q_AujbfBJ_2QhO_JwVK3ET_s32Py49vV_XSWzb9f30wv5pkWXAwZl3ltZLVgohSs4lDWopCygiXydCENsKjLfFEzA7JORF0wBNNgA3lTM8hNfkxOd74r3ao-2E6HjfLaqtnFXG13TEjOZCEfILEnO7YP_veIcVCdjQbbVjv0Y1Q5E3UJZYpK6NkONcHHGHD56g1MbbtT2-7UvruEf9o7j4sOm1f4b1n_oreqtR-DS0f5v9cfrtijAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049717169</pqid></control><display><type>article</type><title>Coordination Variations within Binuclear Copper Dioxygen-Derived (Hydro)Peroxo and Superoxo Species; Influences upon Thermodynamic and Electronic Properties</title><source>ACS Publications</source><creator>Hota, Pradip Kumar ; Jose, Anex ; Panda, Sanjib ; Dunietz, Eleanor M. ; Herzog, Austin E. ; Wojcik, Laurianne ; Le Poul, Nicolas ; Belle, Catherine ; Solomon, Edward I. ; Karlin, Kenneth D.</creator><creatorcontrib>Hota, Pradip Kumar ; Jose, Anex ; Panda, Sanjib ; Dunietz, Eleanor M. ; Herzog, Austin E. ; Wojcik, Laurianne ; Le Poul, Nicolas ; Belle, Catherine ; Solomon, Edward I. ; Karlin, Kenneth D.</creatorcontrib><description>Copper ion is a versatile and ubiquitous facilitator of redox chemical and biochemical processes. These include the binding of molecular oxygen to copper(I) complexes where it undergoes stepwise reduction-protonation. A detailed understanding of thermodynamic relationships between such reduced/protonated states is key to elucidate the fundamentals of the chemical/biochemical processes involved. The dicopper(I) complex [CuI 2(BPMPO–)]1+ {BPMPOH = 2,6-bis{[(bis(2-pyridylmethyl)amino]methyl}-4-methylphenol)} undergoes cryogenic dioxygen addition; further manipulations in 2-methyltetrahydrofuran generate dicopper(II) peroxo [CuII 2(BPMPO–)(O2 2–)]1+, hydroperoxo [CuII 2(BPMPO–)(−OOH)]2+, and superoxo [CuII 2(BPMPO–)(O2 •–)]2+ species, characterized by UV–vis, resonance Raman and electron paramagnetic resonance (EPR) spectroscopies, and cold spray ionization mass spectrometry. An unexpected EPR spectrum for [CuII 2(BPMPO–)(O2 •–)]2+ is explained by the analysis of its exchange-coupled three-spin frustrated system and DFT calculations. A redox equilibrium, [CuII 2(BPMPO–)(O2 2–)]1+ ⇄ [CuII 2(BPMPO–)(O2 •–)]2+, is established utilizing Me8Fc+/Cr(η6-C6H6)2, allowing for [CuII 2(BPMPO–)(O2 •–)]2+/[CuII 2(BPMPO–)(O2 2–)]1+ reduction potential calculation, E°′ = −0.44 ± 0.01 V vs Fc+/0, also confirmed by cryoelectrochemical measurements (E°′ = −0.40 ± 0.01 V). 2,6-Lutidinium triflate addition to [CuII 2(BPMPO–)(O2 2–)]1+ produces [CuII 2(BPMPO–)(−OOH)]2+; using a phosphazene base, an acid–base equilibrium was achieved, pK a = 22.3 ± 0.7 for [CuII 2(BPMPO–)(−OOH)]2+. The BDFEOO–H = 80.3 ± 1.2 kcal/mol, as calculated for [CuII 2(BPMPO–)(−OOH)]2+; this is further substantiated by H atom abstraction from O–H substrates by [CuII 2(BPMPO–)(O2 •–)]2+ forming [CuII 2(BPMPO–)(−OOH)]2+. In comparison to known analogues, the thermodynamic and spectroscopic properties of [CuII 2(BPMPO–)] O2-derived adducts can be accounted for based on chelate ring size variations built into the BPMPO– framework and the resulting enhanced CuII-ion Lewis acidity.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c14422</identifier><identifier>PMID: 38688016</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemical Sciences</subject><ispartof>Journal of the American Chemical Society, 2024-05, Vol.146 (19), p.13066-13082</ispartof><rights>2024 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a424t-2639c68b0474082179456681fe2102a11b973b90c169740950e1cded13d9013c3</citedby><cites>FETCH-LOGICAL-a424t-2639c68b0474082179456681fe2102a11b973b90c169740950e1cded13d9013c3</cites><orcidid>0009-0005-0544-3825 ; 0000-0002-1502-4879 ; 0000-0002-4924-7886 ; 0000-0002-5675-7040 ; 0000-0001-6556-8009 ; 0000-0002-7897-4142 ; 0000-0002-6656-9174 ; 0000-0002-5915-3760 ; 0000-0003-0291-3199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.3c14422$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.3c14422$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27080,27928,27929,56742,56792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38688016$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-brest.fr/hal-04620656$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hota, Pradip Kumar</creatorcontrib><creatorcontrib>Jose, Anex</creatorcontrib><creatorcontrib>Panda, Sanjib</creatorcontrib><creatorcontrib>Dunietz, Eleanor M.</creatorcontrib><creatorcontrib>Herzog, Austin E.</creatorcontrib><creatorcontrib>Wojcik, Laurianne</creatorcontrib><creatorcontrib>Le Poul, Nicolas</creatorcontrib><creatorcontrib>Belle, Catherine</creatorcontrib><creatorcontrib>Solomon, Edward I.</creatorcontrib><creatorcontrib>Karlin, Kenneth D.</creatorcontrib><title>Coordination Variations within Binuclear Copper Dioxygen-Derived (Hydro)Peroxo and Superoxo Species; Influences upon Thermodynamic and Electronic Properties</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Copper ion is a versatile and ubiquitous facilitator of redox chemical and biochemical processes. These include the binding of molecular oxygen to copper(I) complexes where it undergoes stepwise reduction-protonation. A detailed understanding of thermodynamic relationships between such reduced/protonated states is key to elucidate the fundamentals of the chemical/biochemical processes involved. The dicopper(I) complex [CuI 2(BPMPO–)]1+ {BPMPOH = 2,6-bis{[(bis(2-pyridylmethyl)amino]methyl}-4-methylphenol)} undergoes cryogenic dioxygen addition; further manipulations in 2-methyltetrahydrofuran generate dicopper(II) peroxo [CuII 2(BPMPO–)(O2 2–)]1+, hydroperoxo [CuII 2(BPMPO–)(−OOH)]2+, and superoxo [CuII 2(BPMPO–)(O2 •–)]2+ species, characterized by UV–vis, resonance Raman and electron paramagnetic resonance (EPR) spectroscopies, and cold spray ionization mass spectrometry. An unexpected EPR spectrum for [CuII 2(BPMPO–)(O2 •–)]2+ is explained by the analysis of its exchange-coupled three-spin frustrated system and DFT calculations. A redox equilibrium, [CuII 2(BPMPO–)(O2 2–)]1+ ⇄ [CuII 2(BPMPO–)(O2 •–)]2+, is established utilizing Me8Fc+/Cr(η6-C6H6)2, allowing for [CuII 2(BPMPO–)(O2 •–)]2+/[CuII 2(BPMPO–)(O2 2–)]1+ reduction potential calculation, E°′ = −0.44 ± 0.01 V vs Fc+/0, also confirmed by cryoelectrochemical measurements (E°′ = −0.40 ± 0.01 V). 2,6-Lutidinium triflate addition to [CuII 2(BPMPO–)(O2 2–)]1+ produces [CuII 2(BPMPO–)(−OOH)]2+; using a phosphazene base, an acid–base equilibrium was achieved, pK a = 22.3 ± 0.7 for [CuII 2(BPMPO–)(−OOH)]2+. The BDFEOO–H = 80.3 ± 1.2 kcal/mol, as calculated for [CuII 2(BPMPO–)(−OOH)]2+; this is further substantiated by H atom abstraction from O–H substrates by [CuII 2(BPMPO–)(O2 •–)]2+ forming [CuII 2(BPMPO–)(−OOH)]2+. In comparison to known analogues, the thermodynamic and spectroscopic properties of [CuII 2(BPMPO–)] O2-derived adducts can be accounted for based on chelate ring size variations built into the BPMPO– framework and the resulting enhanced CuII-ion Lewis acidity.</description><subject>Chemical Sciences</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkUFP3DAQha2qqCy0t54rH0Ei1OM4TqKe6EJZpJWKBO3V8jqzXa8SO7UTYP8LP7ZedksvPdkz-t570jxCPgI7B8bh81qbeJ4bEILzN2QCBWdZAVy-JRPGGM_KSuaH5CjGdRoFr-AdOcwrWVUM5IQ8T70PjXV6sN7RnzrYl1-kj3ZYWUe_WjeaFnWgU9_3GOil9U-bX-iySwz2ARt6Mts0wZ_eYvBPnmrX0Lux3w13PRqL8Qu9cct2RGcw0rFPOfcrDJ1vNk531rxorlo0Q_AujbfBJ_2QhO_JwVK3ET_s32Py49vV_XSWzb9f30wv5pkWXAwZl3ltZLVgohSs4lDWopCygiXydCENsKjLfFEzA7JORF0wBNNgA3lTM8hNfkxOd74r3ao-2E6HjfLaqtnFXG13TEjOZCEfILEnO7YP_veIcVCdjQbbVjv0Y1Q5E3UJZYpK6NkONcHHGHD56g1MbbtT2-7UvruEf9o7j4sOm1f4b1n_oreqtR-DS0f5v9cfrtijAw</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>Hota, Pradip Kumar</creator><creator>Jose, Anex</creator><creator>Panda, Sanjib</creator><creator>Dunietz, Eleanor M.</creator><creator>Herzog, Austin E.</creator><creator>Wojcik, Laurianne</creator><creator>Le Poul, Nicolas</creator><creator>Belle, Catherine</creator><creator>Solomon, Edward I.</creator><creator>Karlin, Kenneth D.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0009-0005-0544-3825</orcidid><orcidid>https://orcid.org/0000-0002-1502-4879</orcidid><orcidid>https://orcid.org/0000-0002-4924-7886</orcidid><orcidid>https://orcid.org/0000-0002-5675-7040</orcidid><orcidid>https://orcid.org/0000-0001-6556-8009</orcidid><orcidid>https://orcid.org/0000-0002-7897-4142</orcidid><orcidid>https://orcid.org/0000-0002-6656-9174</orcidid><orcidid>https://orcid.org/0000-0002-5915-3760</orcidid><orcidid>https://orcid.org/0000-0003-0291-3199</orcidid></search><sort><creationdate>20240515</creationdate><title>Coordination Variations within Binuclear Copper Dioxygen-Derived (Hydro)Peroxo and Superoxo Species; Influences upon Thermodynamic and Electronic Properties</title><author>Hota, Pradip Kumar ; Jose, Anex ; Panda, Sanjib ; Dunietz, Eleanor M. ; Herzog, Austin E. ; Wojcik, Laurianne ; Le Poul, Nicolas ; Belle, Catherine ; Solomon, Edward I. ; Karlin, Kenneth D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a424t-2639c68b0474082179456681fe2102a11b973b90c169740950e1cded13d9013c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hota, Pradip Kumar</creatorcontrib><creatorcontrib>Jose, Anex</creatorcontrib><creatorcontrib>Panda, Sanjib</creatorcontrib><creatorcontrib>Dunietz, Eleanor M.</creatorcontrib><creatorcontrib>Herzog, Austin E.</creatorcontrib><creatorcontrib>Wojcik, Laurianne</creatorcontrib><creatorcontrib>Le Poul, Nicolas</creatorcontrib><creatorcontrib>Belle, Catherine</creatorcontrib><creatorcontrib>Solomon, Edward I.</creatorcontrib><creatorcontrib>Karlin, Kenneth D.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hota, Pradip Kumar</au><au>Jose, Anex</au><au>Panda, Sanjib</au><au>Dunietz, Eleanor M.</au><au>Herzog, Austin E.</au><au>Wojcik, Laurianne</au><au>Le Poul, Nicolas</au><au>Belle, Catherine</au><au>Solomon, Edward I.</au><au>Karlin, Kenneth D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordination Variations within Binuclear Copper Dioxygen-Derived (Hydro)Peroxo and Superoxo Species; Influences upon Thermodynamic and Electronic Properties</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-05-15</date><risdate>2024</risdate><volume>146</volume><issue>19</issue><spage>13066</spage><epage>13082</epage><pages>13066-13082</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Copper ion is a versatile and ubiquitous facilitator of redox chemical and biochemical processes. These include the binding of molecular oxygen to copper(I) complexes where it undergoes stepwise reduction-protonation. A detailed understanding of thermodynamic relationships between such reduced/protonated states is key to elucidate the fundamentals of the chemical/biochemical processes involved. The dicopper(I) complex [CuI 2(BPMPO–)]1+ {BPMPOH = 2,6-bis{[(bis(2-pyridylmethyl)amino]methyl}-4-methylphenol)} undergoes cryogenic dioxygen addition; further manipulations in 2-methyltetrahydrofuran generate dicopper(II) peroxo [CuII 2(BPMPO–)(O2 2–)]1+, hydroperoxo [CuII 2(BPMPO–)(−OOH)]2+, and superoxo [CuII 2(BPMPO–)(O2 •–)]2+ species, characterized by UV–vis, resonance Raman and electron paramagnetic resonance (EPR) spectroscopies, and cold spray ionization mass spectrometry. An unexpected EPR spectrum for [CuII 2(BPMPO–)(O2 •–)]2+ is explained by the analysis of its exchange-coupled three-spin frustrated system and DFT calculations. A redox equilibrium, [CuII 2(BPMPO–)(O2 2–)]1+ ⇄ [CuII 2(BPMPO–)(O2 •–)]2+, is established utilizing Me8Fc+/Cr(η6-C6H6)2, allowing for [CuII 2(BPMPO–)(O2 •–)]2+/[CuII 2(BPMPO–)(O2 2–)]1+ reduction potential calculation, E°′ = −0.44 ± 0.01 V vs Fc+/0, also confirmed by cryoelectrochemical measurements (E°′ = −0.40 ± 0.01 V). 2,6-Lutidinium triflate addition to [CuII 2(BPMPO–)(O2 2–)]1+ produces [CuII 2(BPMPO–)(−OOH)]2+; using a phosphazene base, an acid–base equilibrium was achieved, pK a = 22.3 ± 0.7 for [CuII 2(BPMPO–)(−OOH)]2+. The BDFEOO–H = 80.3 ± 1.2 kcal/mol, as calculated for [CuII 2(BPMPO–)(−OOH)]2+; this is further substantiated by H atom abstraction from O–H substrates by [CuII 2(BPMPO–)(O2 •–)]2+ forming [CuII 2(BPMPO–)(−OOH)]2+. In comparison to known analogues, the thermodynamic and spectroscopic properties of [CuII 2(BPMPO–)] O2-derived adducts can be accounted for based on chelate ring size variations built into the BPMPO– framework and the resulting enhanced CuII-ion Lewis acidity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38688016</pmid><doi>10.1021/jacs.3c14422</doi><tpages>17</tpages><orcidid>https://orcid.org/0009-0005-0544-3825</orcidid><orcidid>https://orcid.org/0000-0002-1502-4879</orcidid><orcidid>https://orcid.org/0000-0002-4924-7886</orcidid><orcidid>https://orcid.org/0000-0002-5675-7040</orcidid><orcidid>https://orcid.org/0000-0001-6556-8009</orcidid><orcidid>https://orcid.org/0000-0002-7897-4142</orcidid><orcidid>https://orcid.org/0000-0002-6656-9174</orcidid><orcidid>https://orcid.org/0000-0002-5915-3760</orcidid><orcidid>https://orcid.org/0000-0003-0291-3199</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2024-05, Vol.146 (19), p.13066-13082 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04620656v1 |
source | ACS Publications |
subjects | Chemical Sciences |
title | Coordination Variations within Binuclear Copper Dioxygen-Derived (Hydro)Peroxo and Superoxo Species; Influences upon Thermodynamic and Electronic Properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T23%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordination%20Variations%20within%20Binuclear%20Copper%20Dioxygen-Derived%20(Hydro)Peroxo%20and%20Superoxo%20Species;%20Influences%20upon%20Thermodynamic%20and%20Electronic%20Properties&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Hota,%20Pradip%20Kumar&rft.date=2024-05-15&rft.volume=146&rft.issue=19&rft.spage=13066&rft.epage=13082&rft.pages=13066-13082&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c14422&rft_dat=%3Cproquest_hal_p%3E3049717169%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049717169&rft_id=info:pmid/38688016&rfr_iscdi=true |