A Multimodal Fitting Approach to Construct Single-Neuron Models With Patch Clamp and High-Density Microelectrode Arrays
In computational neuroscience, multicompartment models are among the most biophysically realistic representations of single neurons. Constructing such models usually involves the use of the patch-clamp technique to record somatic voltage signals under different experimental conditions. The experimen...
Gespeichert in:
Veröffentlicht in: | Neural computation 2024-06, Vol.36 (7), p.1286-1331 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1331 |
---|---|
container_issue | 7 |
container_start_page | 1286 |
container_title | Neural computation |
container_volume | 36 |
creator | Buccino, Alessio Paolo Damart, Tanguy Bartram, Julian Mandge, Darshan Xue, Xiaohan Zbili, Mickael Gänswein, Tobias Jaquier, Aurélien Emmenegger, Vishalini Markram, Henry Hierlemann, Andreas Van Geit, Werner |
description | In computational neuroscience, multicompartment models are among the most biophysically realistic representations of single neurons. Constructing such models usually involves the use of the patch-clamp technique to record somatic voltage signals under different experimental conditions. The experimental data are then used to fit the many parameters of the model. While patching of the soma is currently the gold-standard approach to build multicompartment models, several studies have also evidenced a richness of dynamics in dendritic and axonal sections. Recording from the soma alone makes it hard to observe and correctly parameterize the activity of nonsomatic compartments. In order to provide a richer set of data as input to multicompartment models, we here investigate the combination of somatic patch-clamp recordings with recordings of high-density microelectrode arrays (HD-MEAs). HD-MEAs enable the observation of extracellular potentials and neural activity of neuronal compartments at subcellular resolution. In this work, we introduce a novel framework to combine patch-clamp and HD-MEA data to construct multicompartment models. We first validate our method on a ground-truth model with known parameters and show that the use of features extracted from extracellular signals, in addition to intracellular ones, yields models enabling better fits than using intracellular features alone. We also demonstrate our procedure using experimental data by constructing cell models from in vitro cell cultures. The proposed multimodal fitting procedure has the potential to augment the modeling efforts of the computational neuroscience community and provide the field with neuronal models that are more realistic and can be better validated. |
doi_str_mv | 10.1162/neco_a_01672 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04610077v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059258844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-363ba4e0e15b82d4d034fe5d2ce5dfa80f72a5682bd85fc3453af7646d32112b3</originalsourceid><addsrcrecordid>eNpNkc1vEzEQxa0K1IbSW8_IRyqx4I_1R46rlBKkBJAAtTfLa3sbI-86tb2g_Pe4Sqm4zEgzv3nSmwfAJUbvMebkw-RMVFohzAU5AQvMKGqklHcvwALJ5bIRnIsz8CrnXwghjhE7BWdUCsGXnC3Anw5u51D8GK0O8MaX4qd72O33KWqzgyXCVZxySbMp8HtdBdd8cXOKE9xG60KGt77s4DddKrwKetxDPVm49ve75tpN2ZcD3HqTogvOlFRPYJeSPuTX4OWgQ3YXT_0c_Lz5-GO1bjZfP31edZvGUIJKQzntdeuQw6yXxLYW0XZwzBJTy6AlGgTRjEvSW8kGQ1tG9SB4yy0lGJOenoOro-5OB7VPftTpoKL2at1t1OMMtfUnSIjfuLJvj2w1_zC7XNTos3Eh6MnFOSuK2JIwKdu2ou-OaLWWc3LDszZG6jEW9X8sFX_zpDz3o7PP8L8c6F8fX4m2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059258844</pqid></control><display><type>article</type><title>A Multimodal Fitting Approach to Construct Single-Neuron Models With Patch Clamp and High-Density Microelectrode Arrays</title><source>MEDLINE</source><source>MIT Press Journals</source><creator>Buccino, Alessio Paolo ; Damart, Tanguy ; Bartram, Julian ; Mandge, Darshan ; Xue, Xiaohan ; Zbili, Mickael ; Gänswein, Tobias ; Jaquier, Aurélien ; Emmenegger, Vishalini ; Markram, Henry ; Hierlemann, Andreas ; Van Geit, Werner</creator><creatorcontrib>Buccino, Alessio Paolo ; Damart, Tanguy ; Bartram, Julian ; Mandge, Darshan ; Xue, Xiaohan ; Zbili, Mickael ; Gänswein, Tobias ; Jaquier, Aurélien ; Emmenegger, Vishalini ; Markram, Henry ; Hierlemann, Andreas ; Van Geit, Werner</creatorcontrib><description>In computational neuroscience, multicompartment models are among the most biophysically realistic representations of single neurons. Constructing such models usually involves the use of the patch-clamp technique to record somatic voltage signals under different experimental conditions. The experimental data are then used to fit the many parameters of the model. While patching of the soma is currently the gold-standard approach to build multicompartment models, several studies have also evidenced a richness of dynamics in dendritic and axonal sections. Recording from the soma alone makes it hard to observe and correctly parameterize the activity of nonsomatic compartments. In order to provide a richer set of data as input to multicompartment models, we here investigate the combination of somatic patch-clamp recordings with recordings of high-density microelectrode arrays (HD-MEAs). HD-MEAs enable the observation of extracellular potentials and neural activity of neuronal compartments at subcellular resolution. In this work, we introduce a novel framework to combine patch-clamp and HD-MEA data to construct multicompartment models. We first validate our method on a ground-truth model with known parameters and show that the use of features extracted from extracellular signals, in addition to intracellular ones, yields models enabling better fits than using intracellular features alone. We also demonstrate our procedure using experimental data by constructing cell models from in vitro cell cultures. The proposed multimodal fitting procedure has the potential to augment the modeling efforts of the computational neuroscience community and provide the field with neuronal models that are more realistic and can be better validated.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/neco_a_01672</identifier><identifier>PMID: 38776965</identifier><language>eng</language><publisher>United States: Massachusetts Institute of Technology Press (MIT Press)</publisher><subject>Action Potentials - physiology ; Animals ; Computer Science ; Computer Simulation ; Life Sciences ; Microelectrodes ; Modeling and Simulation ; Models, Neurological ; Neurobiology ; Neurons - physiology ; Neurons and Cognition ; Patch-Clamp Techniques - instrumentation ; Patch-Clamp Techniques - methods</subject><ispartof>Neural computation, 2024-06, Vol.36 (7), p.1286-1331</ispartof><rights>2024 Alessio Paolo Buccino, Tanguy Damart, Julian Bartram, Darshan Mandge, Xiaohan Xue, Mickael Zbili, Tobias Gänswein, Aurélien Jaquier, Vishalini Emmenegger, Henry Markram, Andreas Hierlemann, Werner Van Geit. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-363ba4e0e15b82d4d034fe5d2ce5dfa80f72a5682bd85fc3453af7646d32112b3</cites><orcidid>0000-0002-7377-2605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38776965$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04610077$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Buccino, Alessio Paolo</creatorcontrib><creatorcontrib>Damart, Tanguy</creatorcontrib><creatorcontrib>Bartram, Julian</creatorcontrib><creatorcontrib>Mandge, Darshan</creatorcontrib><creatorcontrib>Xue, Xiaohan</creatorcontrib><creatorcontrib>Zbili, Mickael</creatorcontrib><creatorcontrib>Gänswein, Tobias</creatorcontrib><creatorcontrib>Jaquier, Aurélien</creatorcontrib><creatorcontrib>Emmenegger, Vishalini</creatorcontrib><creatorcontrib>Markram, Henry</creatorcontrib><creatorcontrib>Hierlemann, Andreas</creatorcontrib><creatorcontrib>Van Geit, Werner</creatorcontrib><title>A Multimodal Fitting Approach to Construct Single-Neuron Models With Patch Clamp and High-Density Microelectrode Arrays</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>In computational neuroscience, multicompartment models are among the most biophysically realistic representations of single neurons. Constructing such models usually involves the use of the patch-clamp technique to record somatic voltage signals under different experimental conditions. The experimental data are then used to fit the many parameters of the model. While patching of the soma is currently the gold-standard approach to build multicompartment models, several studies have also evidenced a richness of dynamics in dendritic and axonal sections. Recording from the soma alone makes it hard to observe and correctly parameterize the activity of nonsomatic compartments. In order to provide a richer set of data as input to multicompartment models, we here investigate the combination of somatic patch-clamp recordings with recordings of high-density microelectrode arrays (HD-MEAs). HD-MEAs enable the observation of extracellular potentials and neural activity of neuronal compartments at subcellular resolution. In this work, we introduce a novel framework to combine patch-clamp and HD-MEA data to construct multicompartment models. We first validate our method on a ground-truth model with known parameters and show that the use of features extracted from extracellular signals, in addition to intracellular ones, yields models enabling better fits than using intracellular features alone. We also demonstrate our procedure using experimental data by constructing cell models from in vitro cell cultures. The proposed multimodal fitting procedure has the potential to augment the modeling efforts of the computational neuroscience community and provide the field with neuronal models that are more realistic and can be better validated.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Computer Science</subject><subject>Computer Simulation</subject><subject>Life Sciences</subject><subject>Microelectrodes</subject><subject>Modeling and Simulation</subject><subject>Models, Neurological</subject><subject>Neurobiology</subject><subject>Neurons - physiology</subject><subject>Neurons and Cognition</subject><subject>Patch-Clamp Techniques - instrumentation</subject><subject>Patch-Clamp Techniques - methods</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkc1vEzEQxa0K1IbSW8_IRyqx4I_1R46rlBKkBJAAtTfLa3sbI-86tb2g_Pe4Sqm4zEgzv3nSmwfAJUbvMebkw-RMVFohzAU5AQvMKGqklHcvwALJ5bIRnIsz8CrnXwghjhE7BWdUCsGXnC3Anw5u51D8GK0O8MaX4qd72O33KWqzgyXCVZxySbMp8HtdBdd8cXOKE9xG60KGt77s4DddKrwKetxDPVm49ve75tpN2ZcD3HqTogvOlFRPYJeSPuTX4OWgQ3YXT_0c_Lz5-GO1bjZfP31edZvGUIJKQzntdeuQw6yXxLYW0XZwzBJTy6AlGgTRjEvSW8kGQ1tG9SB4yy0lGJOenoOro-5OB7VPftTpoKL2at1t1OMMtfUnSIjfuLJvj2w1_zC7XNTos3Eh6MnFOSuK2JIwKdu2ou-OaLWWc3LDszZG6jEW9X8sFX_zpDz3o7PP8L8c6F8fX4m2</recordid><startdate>20240607</startdate><enddate>20240607</enddate><creator>Buccino, Alessio Paolo</creator><creator>Damart, Tanguy</creator><creator>Bartram, Julian</creator><creator>Mandge, Darshan</creator><creator>Xue, Xiaohan</creator><creator>Zbili, Mickael</creator><creator>Gänswein, Tobias</creator><creator>Jaquier, Aurélien</creator><creator>Emmenegger, Vishalini</creator><creator>Markram, Henry</creator><creator>Hierlemann, Andreas</creator><creator>Van Geit, Werner</creator><general>Massachusetts Institute of Technology Press (MIT Press)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7377-2605</orcidid></search><sort><creationdate>20240607</creationdate><title>A Multimodal Fitting Approach to Construct Single-Neuron Models With Patch Clamp and High-Density Microelectrode Arrays</title><author>Buccino, Alessio Paolo ; Damart, Tanguy ; Bartram, Julian ; Mandge, Darshan ; Xue, Xiaohan ; Zbili, Mickael ; Gänswein, Tobias ; Jaquier, Aurélien ; Emmenegger, Vishalini ; Markram, Henry ; Hierlemann, Andreas ; Van Geit, Werner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-363ba4e0e15b82d4d034fe5d2ce5dfa80f72a5682bd85fc3453af7646d32112b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Computer Science</topic><topic>Computer Simulation</topic><topic>Life Sciences</topic><topic>Microelectrodes</topic><topic>Modeling and Simulation</topic><topic>Models, Neurological</topic><topic>Neurobiology</topic><topic>Neurons - physiology</topic><topic>Neurons and Cognition</topic><topic>Patch-Clamp Techniques - instrumentation</topic><topic>Patch-Clamp Techniques - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buccino, Alessio Paolo</creatorcontrib><creatorcontrib>Damart, Tanguy</creatorcontrib><creatorcontrib>Bartram, Julian</creatorcontrib><creatorcontrib>Mandge, Darshan</creatorcontrib><creatorcontrib>Xue, Xiaohan</creatorcontrib><creatorcontrib>Zbili, Mickael</creatorcontrib><creatorcontrib>Gänswein, Tobias</creatorcontrib><creatorcontrib>Jaquier, Aurélien</creatorcontrib><creatorcontrib>Emmenegger, Vishalini</creatorcontrib><creatorcontrib>Markram, Henry</creatorcontrib><creatorcontrib>Hierlemann, Andreas</creatorcontrib><creatorcontrib>Van Geit, Werner</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buccino, Alessio Paolo</au><au>Damart, Tanguy</au><au>Bartram, Julian</au><au>Mandge, Darshan</au><au>Xue, Xiaohan</au><au>Zbili, Mickael</au><au>Gänswein, Tobias</au><au>Jaquier, Aurélien</au><au>Emmenegger, Vishalini</au><au>Markram, Henry</au><au>Hierlemann, Andreas</au><au>Van Geit, Werner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multimodal Fitting Approach to Construct Single-Neuron Models With Patch Clamp and High-Density Microelectrode Arrays</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2024-06-07</date><risdate>2024</risdate><volume>36</volume><issue>7</issue><spage>1286</spage><epage>1331</epage><pages>1286-1331</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><abstract>In computational neuroscience, multicompartment models are among the most biophysically realistic representations of single neurons. Constructing such models usually involves the use of the patch-clamp technique to record somatic voltage signals under different experimental conditions. The experimental data are then used to fit the many parameters of the model. While patching of the soma is currently the gold-standard approach to build multicompartment models, several studies have also evidenced a richness of dynamics in dendritic and axonal sections. Recording from the soma alone makes it hard to observe and correctly parameterize the activity of nonsomatic compartments. In order to provide a richer set of data as input to multicompartment models, we here investigate the combination of somatic patch-clamp recordings with recordings of high-density microelectrode arrays (HD-MEAs). HD-MEAs enable the observation of extracellular potentials and neural activity of neuronal compartments at subcellular resolution. In this work, we introduce a novel framework to combine patch-clamp and HD-MEA data to construct multicompartment models. We first validate our method on a ground-truth model with known parameters and show that the use of features extracted from extracellular signals, in addition to intracellular ones, yields models enabling better fits than using intracellular features alone. We also demonstrate our procedure using experimental data by constructing cell models from in vitro cell cultures. The proposed multimodal fitting procedure has the potential to augment the modeling efforts of the computational neuroscience community and provide the field with neuronal models that are more realistic and can be better validated.</abstract><cop>United States</cop><pub>Massachusetts Institute of Technology Press (MIT Press)</pub><pmid>38776965</pmid><doi>10.1162/neco_a_01672</doi><tpages>46</tpages><orcidid>https://orcid.org/0000-0002-7377-2605</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-7667 |
ispartof | Neural computation, 2024-06, Vol.36 (7), p.1286-1331 |
issn | 0899-7667 1530-888X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04610077v1 |
source | MEDLINE; MIT Press Journals |
subjects | Action Potentials - physiology Animals Computer Science Computer Simulation Life Sciences Microelectrodes Modeling and Simulation Models, Neurological Neurobiology Neurons - physiology Neurons and Cognition Patch-Clamp Techniques - instrumentation Patch-Clamp Techniques - methods |
title | A Multimodal Fitting Approach to Construct Single-Neuron Models With Patch Clamp and High-Density Microelectrode Arrays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multimodal%20Fitting%20Approach%20to%20Construct%20Single-Neuron%20Models%20With%20Patch%20Clamp%20and%20High-Density%20Microelectrode%20Arrays&rft.jtitle=Neural%20computation&rft.au=Buccino,%20Alessio%20Paolo&rft.date=2024-06-07&rft.volume=36&rft.issue=7&rft.spage=1286&rft.epage=1331&rft.pages=1286-1331&rft.issn=0899-7667&rft.eissn=1530-888X&rft_id=info:doi/10.1162/neco_a_01672&rft_dat=%3Cproquest_hal_p%3E3059258844%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059258844&rft_id=info:pmid/38776965&rfr_iscdi=true |