A Multimodal Fitting Approach to Construct Single-Neuron Models With Patch Clamp and High-Density Microelectrode Arrays

In computational neuroscience, multicompartment models are among the most biophysically realistic representations of single neurons. Constructing such models usually involves the use of the patch-clamp technique to record somatic voltage signals under different experimental conditions. The experimen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 2024-06, Vol.36 (7), p.1286-1331
Hauptverfasser: Buccino, Alessio Paolo, Damart, Tanguy, Bartram, Julian, Mandge, Darshan, Xue, Xiaohan, Zbili, Mickael, Gänswein, Tobias, Jaquier, Aurélien, Emmenegger, Vishalini, Markram, Henry, Hierlemann, Andreas, Van Geit, Werner
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1331
container_issue 7
container_start_page 1286
container_title Neural computation
container_volume 36
creator Buccino, Alessio Paolo
Damart, Tanguy
Bartram, Julian
Mandge, Darshan
Xue, Xiaohan
Zbili, Mickael
Gänswein, Tobias
Jaquier, Aurélien
Emmenegger, Vishalini
Markram, Henry
Hierlemann, Andreas
Van Geit, Werner
description In computational neuroscience, multicompartment models are among the most biophysically realistic representations of single neurons. Constructing such models usually involves the use of the patch-clamp technique to record somatic voltage signals under different experimental conditions. The experimental data are then used to fit the many parameters of the model. While patching of the soma is currently the gold-standard approach to build multicompartment models, several studies have also evidenced a richness of dynamics in dendritic and axonal sections. Recording from the soma alone makes it hard to observe and correctly parameterize the activity of nonsomatic compartments. In order to provide a richer set of data as input to multicompartment models, we here investigate the combination of somatic patch-clamp recordings with recordings of high-density microelectrode arrays (HD-MEAs). HD-MEAs enable the observation of extracellular potentials and neural activity of neuronal compartments at subcellular resolution. In this work, we introduce a novel framework to combine patch-clamp and HD-MEA data to construct multicompartment models. We first validate our method on a ground-truth model with known parameters and show that the use of features extracted from extracellular signals, in addition to intracellular ones, yields models enabling better fits than using intracellular features alone. We also demonstrate our procedure using experimental data by constructing cell models from in vitro cell cultures. The proposed multimodal fitting procedure has the potential to augment the modeling efforts of the computational neuroscience community and provide the field with neuronal models that are more realistic and can be better validated.
doi_str_mv 10.1162/neco_a_01672
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04610077v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059258844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-363ba4e0e15b82d4d034fe5d2ce5dfa80f72a5682bd85fc3453af7646d32112b3</originalsourceid><addsrcrecordid>eNpNkc1vEzEQxa0K1IbSW8_IRyqx4I_1R46rlBKkBJAAtTfLa3sbI-86tb2g_Pe4Sqm4zEgzv3nSmwfAJUbvMebkw-RMVFohzAU5AQvMKGqklHcvwALJ5bIRnIsz8CrnXwghjhE7BWdUCsGXnC3Anw5u51D8GK0O8MaX4qd72O33KWqzgyXCVZxySbMp8HtdBdd8cXOKE9xG60KGt77s4DddKrwKetxDPVm49ve75tpN2ZcD3HqTogvOlFRPYJeSPuTX4OWgQ3YXT_0c_Lz5-GO1bjZfP31edZvGUIJKQzntdeuQw6yXxLYW0XZwzBJTy6AlGgTRjEvSW8kGQ1tG9SB4yy0lGJOenoOro-5OB7VPftTpoKL2at1t1OMMtfUnSIjfuLJvj2w1_zC7XNTos3Eh6MnFOSuK2JIwKdu2ou-OaLWWc3LDszZG6jEW9X8sFX_zpDz3o7PP8L8c6F8fX4m2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059258844</pqid></control><display><type>article</type><title>A Multimodal Fitting Approach to Construct Single-Neuron Models With Patch Clamp and High-Density Microelectrode Arrays</title><source>MEDLINE</source><source>MIT Press Journals</source><creator>Buccino, Alessio Paolo ; Damart, Tanguy ; Bartram, Julian ; Mandge, Darshan ; Xue, Xiaohan ; Zbili, Mickael ; Gänswein, Tobias ; Jaquier, Aurélien ; Emmenegger, Vishalini ; Markram, Henry ; Hierlemann, Andreas ; Van Geit, Werner</creator><creatorcontrib>Buccino, Alessio Paolo ; Damart, Tanguy ; Bartram, Julian ; Mandge, Darshan ; Xue, Xiaohan ; Zbili, Mickael ; Gänswein, Tobias ; Jaquier, Aurélien ; Emmenegger, Vishalini ; Markram, Henry ; Hierlemann, Andreas ; Van Geit, Werner</creatorcontrib><description>In computational neuroscience, multicompartment models are among the most biophysically realistic representations of single neurons. Constructing such models usually involves the use of the patch-clamp technique to record somatic voltage signals under different experimental conditions. The experimental data are then used to fit the many parameters of the model. While patching of the soma is currently the gold-standard approach to build multicompartment models, several studies have also evidenced a richness of dynamics in dendritic and axonal sections. Recording from the soma alone makes it hard to observe and correctly parameterize the activity of nonsomatic compartments. In order to provide a richer set of data as input to multicompartment models, we here investigate the combination of somatic patch-clamp recordings with recordings of high-density microelectrode arrays (HD-MEAs). HD-MEAs enable the observation of extracellular potentials and neural activity of neuronal compartments at subcellular resolution. In this work, we introduce a novel framework to combine patch-clamp and HD-MEA data to construct multicompartment models. We first validate our method on a ground-truth model with known parameters and show that the use of features extracted from extracellular signals, in addition to intracellular ones, yields models enabling better fits than using intracellular features alone. We also demonstrate our procedure using experimental data by constructing cell models from in vitro cell cultures. The proposed multimodal fitting procedure has the potential to augment the modeling efforts of the computational neuroscience community and provide the field with neuronal models that are more realistic and can be better validated.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/neco_a_01672</identifier><identifier>PMID: 38776965</identifier><language>eng</language><publisher>United States: Massachusetts Institute of Technology Press (MIT Press)</publisher><subject>Action Potentials - physiology ; Animals ; Computer Science ; Computer Simulation ; Life Sciences ; Microelectrodes ; Modeling and Simulation ; Models, Neurological ; Neurobiology ; Neurons - physiology ; Neurons and Cognition ; Patch-Clamp Techniques - instrumentation ; Patch-Clamp Techniques - methods</subject><ispartof>Neural computation, 2024-06, Vol.36 (7), p.1286-1331</ispartof><rights>2024 Alessio Paolo Buccino, Tanguy Damart, Julian Bartram, Darshan Mandge, Xiaohan Xue, Mickael Zbili, Tobias Gänswein, Aurélien Jaquier, Vishalini Emmenegger, Henry Markram, Andreas Hierlemann, Werner Van Geit. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-363ba4e0e15b82d4d034fe5d2ce5dfa80f72a5682bd85fc3453af7646d32112b3</cites><orcidid>0000-0002-7377-2605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38776965$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04610077$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Buccino, Alessio Paolo</creatorcontrib><creatorcontrib>Damart, Tanguy</creatorcontrib><creatorcontrib>Bartram, Julian</creatorcontrib><creatorcontrib>Mandge, Darshan</creatorcontrib><creatorcontrib>Xue, Xiaohan</creatorcontrib><creatorcontrib>Zbili, Mickael</creatorcontrib><creatorcontrib>Gänswein, Tobias</creatorcontrib><creatorcontrib>Jaquier, Aurélien</creatorcontrib><creatorcontrib>Emmenegger, Vishalini</creatorcontrib><creatorcontrib>Markram, Henry</creatorcontrib><creatorcontrib>Hierlemann, Andreas</creatorcontrib><creatorcontrib>Van Geit, Werner</creatorcontrib><title>A Multimodal Fitting Approach to Construct Single-Neuron Models With Patch Clamp and High-Density Microelectrode Arrays</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>In computational neuroscience, multicompartment models are among the most biophysically realistic representations of single neurons. Constructing such models usually involves the use of the patch-clamp technique to record somatic voltage signals under different experimental conditions. The experimental data are then used to fit the many parameters of the model. While patching of the soma is currently the gold-standard approach to build multicompartment models, several studies have also evidenced a richness of dynamics in dendritic and axonal sections. Recording from the soma alone makes it hard to observe and correctly parameterize the activity of nonsomatic compartments. In order to provide a richer set of data as input to multicompartment models, we here investigate the combination of somatic patch-clamp recordings with recordings of high-density microelectrode arrays (HD-MEAs). HD-MEAs enable the observation of extracellular potentials and neural activity of neuronal compartments at subcellular resolution. In this work, we introduce a novel framework to combine patch-clamp and HD-MEA data to construct multicompartment models. We first validate our method on a ground-truth model with known parameters and show that the use of features extracted from extracellular signals, in addition to intracellular ones, yields models enabling better fits than using intracellular features alone. We also demonstrate our procedure using experimental data by constructing cell models from in vitro cell cultures. The proposed multimodal fitting procedure has the potential to augment the modeling efforts of the computational neuroscience community and provide the field with neuronal models that are more realistic and can be better validated.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Computer Science</subject><subject>Computer Simulation</subject><subject>Life Sciences</subject><subject>Microelectrodes</subject><subject>Modeling and Simulation</subject><subject>Models, Neurological</subject><subject>Neurobiology</subject><subject>Neurons - physiology</subject><subject>Neurons and Cognition</subject><subject>Patch-Clamp Techniques - instrumentation</subject><subject>Patch-Clamp Techniques - methods</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkc1vEzEQxa0K1IbSW8_IRyqx4I_1R46rlBKkBJAAtTfLa3sbI-86tb2g_Pe4Sqm4zEgzv3nSmwfAJUbvMebkw-RMVFohzAU5AQvMKGqklHcvwALJ5bIRnIsz8CrnXwghjhE7BWdUCsGXnC3Anw5u51D8GK0O8MaX4qd72O33KWqzgyXCVZxySbMp8HtdBdd8cXOKE9xG60KGt77s4DddKrwKetxDPVm49ve75tpN2ZcD3HqTogvOlFRPYJeSPuTX4OWgQ3YXT_0c_Lz5-GO1bjZfP31edZvGUIJKQzntdeuQw6yXxLYW0XZwzBJTy6AlGgTRjEvSW8kGQ1tG9SB4yy0lGJOenoOro-5OB7VPftTpoKL2at1t1OMMtfUnSIjfuLJvj2w1_zC7XNTos3Eh6MnFOSuK2JIwKdu2ou-OaLWWc3LDszZG6jEW9X8sFX_zpDz3o7PP8L8c6F8fX4m2</recordid><startdate>20240607</startdate><enddate>20240607</enddate><creator>Buccino, Alessio Paolo</creator><creator>Damart, Tanguy</creator><creator>Bartram, Julian</creator><creator>Mandge, Darshan</creator><creator>Xue, Xiaohan</creator><creator>Zbili, Mickael</creator><creator>Gänswein, Tobias</creator><creator>Jaquier, Aurélien</creator><creator>Emmenegger, Vishalini</creator><creator>Markram, Henry</creator><creator>Hierlemann, Andreas</creator><creator>Van Geit, Werner</creator><general>Massachusetts Institute of Technology Press (MIT Press)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7377-2605</orcidid></search><sort><creationdate>20240607</creationdate><title>A Multimodal Fitting Approach to Construct Single-Neuron Models With Patch Clamp and High-Density Microelectrode Arrays</title><author>Buccino, Alessio Paolo ; Damart, Tanguy ; Bartram, Julian ; Mandge, Darshan ; Xue, Xiaohan ; Zbili, Mickael ; Gänswein, Tobias ; Jaquier, Aurélien ; Emmenegger, Vishalini ; Markram, Henry ; Hierlemann, Andreas ; Van Geit, Werner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-363ba4e0e15b82d4d034fe5d2ce5dfa80f72a5682bd85fc3453af7646d32112b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Computer Science</topic><topic>Computer Simulation</topic><topic>Life Sciences</topic><topic>Microelectrodes</topic><topic>Modeling and Simulation</topic><topic>Models, Neurological</topic><topic>Neurobiology</topic><topic>Neurons - physiology</topic><topic>Neurons and Cognition</topic><topic>Patch-Clamp Techniques - instrumentation</topic><topic>Patch-Clamp Techniques - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buccino, Alessio Paolo</creatorcontrib><creatorcontrib>Damart, Tanguy</creatorcontrib><creatorcontrib>Bartram, Julian</creatorcontrib><creatorcontrib>Mandge, Darshan</creatorcontrib><creatorcontrib>Xue, Xiaohan</creatorcontrib><creatorcontrib>Zbili, Mickael</creatorcontrib><creatorcontrib>Gänswein, Tobias</creatorcontrib><creatorcontrib>Jaquier, Aurélien</creatorcontrib><creatorcontrib>Emmenegger, Vishalini</creatorcontrib><creatorcontrib>Markram, Henry</creatorcontrib><creatorcontrib>Hierlemann, Andreas</creatorcontrib><creatorcontrib>Van Geit, Werner</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buccino, Alessio Paolo</au><au>Damart, Tanguy</au><au>Bartram, Julian</au><au>Mandge, Darshan</au><au>Xue, Xiaohan</au><au>Zbili, Mickael</au><au>Gänswein, Tobias</au><au>Jaquier, Aurélien</au><au>Emmenegger, Vishalini</au><au>Markram, Henry</au><au>Hierlemann, Andreas</au><au>Van Geit, Werner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multimodal Fitting Approach to Construct Single-Neuron Models With Patch Clamp and High-Density Microelectrode Arrays</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2024-06-07</date><risdate>2024</risdate><volume>36</volume><issue>7</issue><spage>1286</spage><epage>1331</epage><pages>1286-1331</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><abstract>In computational neuroscience, multicompartment models are among the most biophysically realistic representations of single neurons. Constructing such models usually involves the use of the patch-clamp technique to record somatic voltage signals under different experimental conditions. The experimental data are then used to fit the many parameters of the model. While patching of the soma is currently the gold-standard approach to build multicompartment models, several studies have also evidenced a richness of dynamics in dendritic and axonal sections. Recording from the soma alone makes it hard to observe and correctly parameterize the activity of nonsomatic compartments. In order to provide a richer set of data as input to multicompartment models, we here investigate the combination of somatic patch-clamp recordings with recordings of high-density microelectrode arrays (HD-MEAs). HD-MEAs enable the observation of extracellular potentials and neural activity of neuronal compartments at subcellular resolution. In this work, we introduce a novel framework to combine patch-clamp and HD-MEA data to construct multicompartment models. We first validate our method on a ground-truth model with known parameters and show that the use of features extracted from extracellular signals, in addition to intracellular ones, yields models enabling better fits than using intracellular features alone. We also demonstrate our procedure using experimental data by constructing cell models from in vitro cell cultures. The proposed multimodal fitting procedure has the potential to augment the modeling efforts of the computational neuroscience community and provide the field with neuronal models that are more realistic and can be better validated.</abstract><cop>United States</cop><pub>Massachusetts Institute of Technology Press (MIT Press)</pub><pmid>38776965</pmid><doi>10.1162/neco_a_01672</doi><tpages>46</tpages><orcidid>https://orcid.org/0000-0002-7377-2605</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0899-7667
ispartof Neural computation, 2024-06, Vol.36 (7), p.1286-1331
issn 0899-7667
1530-888X
language eng
recordid cdi_hal_primary_oai_HAL_hal_04610077v1
source MEDLINE; MIT Press Journals
subjects Action Potentials - physiology
Animals
Computer Science
Computer Simulation
Life Sciences
Microelectrodes
Modeling and Simulation
Models, Neurological
Neurobiology
Neurons - physiology
Neurons and Cognition
Patch-Clamp Techniques - instrumentation
Patch-Clamp Techniques - methods
title A Multimodal Fitting Approach to Construct Single-Neuron Models With Patch Clamp and High-Density Microelectrode Arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multimodal%20Fitting%20Approach%20to%20Construct%20Single-Neuron%20Models%20With%20Patch%20Clamp%20and%20High-Density%20Microelectrode%20Arrays&rft.jtitle=Neural%20computation&rft.au=Buccino,%20Alessio%20Paolo&rft.date=2024-06-07&rft.volume=36&rft.issue=7&rft.spage=1286&rft.epage=1331&rft.pages=1286-1331&rft.issn=0899-7667&rft.eissn=1530-888X&rft_id=info:doi/10.1162/neco_a_01672&rft_dat=%3Cproquest_hal_p%3E3059258844%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059258844&rft_id=info:pmid/38776965&rfr_iscdi=true