Big Ramsey degrees in ultraproducts of finite structures
We develop a transfer principle of structural Ramsey theory from finite structures to ultraproducts. We show that under certain mild conditions, when a class of finite structures has finite small Ramsey degrees, under the (Generalized) Continuum Hypothesis the ultraproduct has finite big Ramsey degr...
Gespeichert in:
Veröffentlicht in: | Annals of pure and applied logic 2024-07, Vol.175 (7), p.103439, Article 103439 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 103439 |
container_title | Annals of pure and applied logic |
container_volume | 175 |
creator | Bartošová, Dana Džamonja, Mirna Patel, Rehana Scow, Lynn |
description | We develop a transfer principle of structural Ramsey theory from finite structures to ultraproducts. We show that under certain mild conditions, when a class of finite structures has finite small Ramsey degrees, under the (Generalized) Continuum Hypothesis the ultraproduct has finite big Ramsey degrees for internal colorings. The necessity of restricting to internal colorings is demonstrated by the example of the ultraproduct of finite linear orders. Under CH, this ultraproduct L⁎ has, as a spine, η1, an uncountable analogue of the order type of rationals η. Finite big Ramsey degrees for η were exactly calculated by Devlin in [5]. It is immediate from [39] that η1 fails to have finite big Ramsey degrees. Moreover, we extend Devlin's coloring to η1 to show that it witnesses big Ramsey degrees of finite tuples in η on every copy of η in η1, and consequently in L⁎. This work gives additional confirmation that ultraproducts are a suitable environment for studying Ramsey properties of finite and infinite structures. |
doi_str_mv | 10.1016/j.apal.2024.103439 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04600079v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168007224000368</els_id><sourcerecordid>oai_HAL_hal_04600079v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-a9dc81da7e40f4545c0ea0283f3f03a645f8a79e6e905aa45f6e11b77f273d9c3</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxfegYK1-AU-5ekid_ZNsAl5q0VYoCKLnZdzM1i1pU3bTQr-9GyIePQ3z5v0G3mPsjsOMAy8ftjM8YDsTIFQSpJL1BZukQ5UDaHHFrmPcAkChtJyw6slvsnfcRTpnDW0CUcz8Pju2fcBD6Jqj7WPWucz5ve8pi31IyjFQvGGXDttIt79zyj5fnj8Wq3z9tnxdzNe5laLuc6wbW_EGNSlwqlCFBUIQlXTSgcRSFa5CXVNJNRSIaS2J8y-tndCyqa2csvvx7ze25hD8DsPZdOjNar42gwaqTGl0feLJK0avDV2MgdwfwMEM3ZitGboxQzdm7CZBjyNEKcXJUzDRetpbanwg25um8__hP0PnblE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Big Ramsey degrees in ultraproducts of finite structures</title><source>Elsevier ScienceDirect Journals</source><creator>Bartošová, Dana ; Džamonja, Mirna ; Patel, Rehana ; Scow, Lynn</creator><creatorcontrib>Bartošová, Dana ; Džamonja, Mirna ; Patel, Rehana ; Scow, Lynn</creatorcontrib><description>We develop a transfer principle of structural Ramsey theory from finite structures to ultraproducts. We show that under certain mild conditions, when a class of finite structures has finite small Ramsey degrees, under the (Generalized) Continuum Hypothesis the ultraproduct has finite big Ramsey degrees for internal colorings. The necessity of restricting to internal colorings is demonstrated by the example of the ultraproduct of finite linear orders. Under CH, this ultraproduct L⁎ has, as a spine, η1, an uncountable analogue of the order type of rationals η. Finite big Ramsey degrees for η were exactly calculated by Devlin in [5]. It is immediate from [39] that η1 fails to have finite big Ramsey degrees. Moreover, we extend Devlin's coloring to η1 to show that it witnesses big Ramsey degrees of finite tuples in η on every copy of η in η1, and consequently in L⁎. This work gives additional confirmation that ultraproducts are a suitable environment for studying Ramsey properties of finite and infinite structures.</description><identifier>ISSN: 0168-0072</identifier><identifier>DOI: 10.1016/j.apal.2024.103439</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Big Ramsey degree ; formula omitted ; Mathematics ; Partition property ; Ultraproduct</subject><ispartof>Annals of pure and applied logic, 2024-07, Vol.175 (7), p.103439, Article 103439</ispartof><rights>2024 The Author(s)</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c329t-a9dc81da7e40f4545c0ea0283f3f03a645f8a79e6e905aa45f6e11b77f273d9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168007224000368$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://u-paris.hal.science/hal-04600079$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bartošová, Dana</creatorcontrib><creatorcontrib>Džamonja, Mirna</creatorcontrib><creatorcontrib>Patel, Rehana</creatorcontrib><creatorcontrib>Scow, Lynn</creatorcontrib><title>Big Ramsey degrees in ultraproducts of finite structures</title><title>Annals of pure and applied logic</title><description>We develop a transfer principle of structural Ramsey theory from finite structures to ultraproducts. We show that under certain mild conditions, when a class of finite structures has finite small Ramsey degrees, under the (Generalized) Continuum Hypothesis the ultraproduct has finite big Ramsey degrees for internal colorings. The necessity of restricting to internal colorings is demonstrated by the example of the ultraproduct of finite linear orders. Under CH, this ultraproduct L⁎ has, as a spine, η1, an uncountable analogue of the order type of rationals η. Finite big Ramsey degrees for η were exactly calculated by Devlin in [5]. It is immediate from [39] that η1 fails to have finite big Ramsey degrees. Moreover, we extend Devlin's coloring to η1 to show that it witnesses big Ramsey degrees of finite tuples in η on every copy of η in η1, and consequently in L⁎. This work gives additional confirmation that ultraproducts are a suitable environment for studying Ramsey properties of finite and infinite structures.</description><subject>Big Ramsey degree</subject><subject>formula omitted</subject><subject>Mathematics</subject><subject>Partition property</subject><subject>Ultraproduct</subject><issn>0168-0072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxfegYK1-AU-5ekid_ZNsAl5q0VYoCKLnZdzM1i1pU3bTQr-9GyIePQ3z5v0G3mPsjsOMAy8ftjM8YDsTIFQSpJL1BZukQ5UDaHHFrmPcAkChtJyw6slvsnfcRTpnDW0CUcz8Pju2fcBD6Jqj7WPWucz5ve8pi31IyjFQvGGXDttIt79zyj5fnj8Wq3z9tnxdzNe5laLuc6wbW_EGNSlwqlCFBUIQlXTSgcRSFa5CXVNJNRSIaS2J8y-tndCyqa2csvvx7ze25hD8DsPZdOjNar42gwaqTGl0feLJK0avDV2MgdwfwMEM3ZitGboxQzdm7CZBjyNEKcXJUzDRetpbanwg25um8__hP0PnblE</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Bartošová, Dana</creator><creator>Džamonja, Mirna</creator><creator>Patel, Rehana</creator><creator>Scow, Lynn</creator><general>Elsevier B.V</general><general>Elsevier Masson</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>202407</creationdate><title>Big Ramsey degrees in ultraproducts of finite structures</title><author>Bartošová, Dana ; Džamonja, Mirna ; Patel, Rehana ; Scow, Lynn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-a9dc81da7e40f4545c0ea0283f3f03a645f8a79e6e905aa45f6e11b77f273d9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Big Ramsey degree</topic><topic>formula omitted</topic><topic>Mathematics</topic><topic>Partition property</topic><topic>Ultraproduct</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bartošová, Dana</creatorcontrib><creatorcontrib>Džamonja, Mirna</creatorcontrib><creatorcontrib>Patel, Rehana</creatorcontrib><creatorcontrib>Scow, Lynn</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Annals of pure and applied logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bartošová, Dana</au><au>Džamonja, Mirna</au><au>Patel, Rehana</au><au>Scow, Lynn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Big Ramsey degrees in ultraproducts of finite structures</atitle><jtitle>Annals of pure and applied logic</jtitle><date>2024-07</date><risdate>2024</risdate><volume>175</volume><issue>7</issue><spage>103439</spage><pages>103439-</pages><artnum>103439</artnum><issn>0168-0072</issn><abstract>We develop a transfer principle of structural Ramsey theory from finite structures to ultraproducts. We show that under certain mild conditions, when a class of finite structures has finite small Ramsey degrees, under the (Generalized) Continuum Hypothesis the ultraproduct has finite big Ramsey degrees for internal colorings. The necessity of restricting to internal colorings is demonstrated by the example of the ultraproduct of finite linear orders. Under CH, this ultraproduct L⁎ has, as a spine, η1, an uncountable analogue of the order type of rationals η. Finite big Ramsey degrees for η were exactly calculated by Devlin in [5]. It is immediate from [39] that η1 fails to have finite big Ramsey degrees. Moreover, we extend Devlin's coloring to η1 to show that it witnesses big Ramsey degrees of finite tuples in η on every copy of η in η1, and consequently in L⁎. This work gives additional confirmation that ultraproducts are a suitable environment for studying Ramsey properties of finite and infinite structures.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apal.2024.103439</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-0072 |
ispartof | Annals of pure and applied logic, 2024-07, Vol.175 (7), p.103439, Article 103439 |
issn | 0168-0072 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04600079v1 |
source | Elsevier ScienceDirect Journals |
subjects | Big Ramsey degree formula omitted Mathematics Partition property Ultraproduct |
title | Big Ramsey degrees in ultraproducts of finite structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A20%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Big%20Ramsey%20degrees%20in%20ultraproducts%20of%20finite%20structures&rft.jtitle=Annals%20of%20pure%20and%20applied%20logic&rft.au=Barto%C5%A1ov%C3%A1,%20Dana&rft.date=2024-07&rft.volume=175&rft.issue=7&rft.spage=103439&rft.pages=103439-&rft.artnum=103439&rft.issn=0168-0072&rft_id=info:doi/10.1016/j.apal.2024.103439&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04600079v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0168007224000368&rfr_iscdi=true |