Big Ramsey degrees in ultraproducts of finite structures

We develop a transfer principle of structural Ramsey theory from finite structures to ultraproducts. We show that under certain mild conditions, when a class of finite structures has finite small Ramsey degrees, under the (Generalized) Continuum Hypothesis the ultraproduct has finite big Ramsey degr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of pure and applied logic 2024-07, Vol.175 (7), p.103439, Article 103439
Hauptverfasser: Bartošová, Dana, Džamonja, Mirna, Patel, Rehana, Scow, Lynn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 103439
container_title Annals of pure and applied logic
container_volume 175
creator Bartošová, Dana
Džamonja, Mirna
Patel, Rehana
Scow, Lynn
description We develop a transfer principle of structural Ramsey theory from finite structures to ultraproducts. We show that under certain mild conditions, when a class of finite structures has finite small Ramsey degrees, under the (Generalized) Continuum Hypothesis the ultraproduct has finite big Ramsey degrees for internal colorings. The necessity of restricting to internal colorings is demonstrated by the example of the ultraproduct of finite linear orders. Under CH, this ultraproduct L⁎ has, as a spine, η1, an uncountable analogue of the order type of rationals η. Finite big Ramsey degrees for η were exactly calculated by Devlin in [5]. It is immediate from [39] that η1 fails to have finite big Ramsey degrees. Moreover, we extend Devlin's coloring to η1 to show that it witnesses big Ramsey degrees of finite tuples in η on every copy of η in η1, and consequently in L⁎. This work gives additional confirmation that ultraproducts are a suitable environment for studying Ramsey properties of finite and infinite structures.
doi_str_mv 10.1016/j.apal.2024.103439
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04600079v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168007224000368</els_id><sourcerecordid>oai_HAL_hal_04600079v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-a9dc81da7e40f4545c0ea0283f3f03a645f8a79e6e905aa45f6e11b77f273d9c3</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxfegYK1-AU-5ekid_ZNsAl5q0VYoCKLnZdzM1i1pU3bTQr-9GyIePQ3z5v0G3mPsjsOMAy8ftjM8YDsTIFQSpJL1BZukQ5UDaHHFrmPcAkChtJyw6slvsnfcRTpnDW0CUcz8Pju2fcBD6Jqj7WPWucz5ve8pi31IyjFQvGGXDttIt79zyj5fnj8Wq3z9tnxdzNe5laLuc6wbW_EGNSlwqlCFBUIQlXTSgcRSFa5CXVNJNRSIaS2J8y-tndCyqa2csvvx7ze25hD8DsPZdOjNar42gwaqTGl0feLJK0avDV2MgdwfwMEM3ZitGboxQzdm7CZBjyNEKcXJUzDRetpbanwg25um8__hP0PnblE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Big Ramsey degrees in ultraproducts of finite structures</title><source>Elsevier ScienceDirect Journals</source><creator>Bartošová, Dana ; Džamonja, Mirna ; Patel, Rehana ; Scow, Lynn</creator><creatorcontrib>Bartošová, Dana ; Džamonja, Mirna ; Patel, Rehana ; Scow, Lynn</creatorcontrib><description>We develop a transfer principle of structural Ramsey theory from finite structures to ultraproducts. We show that under certain mild conditions, when a class of finite structures has finite small Ramsey degrees, under the (Generalized) Continuum Hypothesis the ultraproduct has finite big Ramsey degrees for internal colorings. The necessity of restricting to internal colorings is demonstrated by the example of the ultraproduct of finite linear orders. Under CH, this ultraproduct L⁎ has, as a spine, η1, an uncountable analogue of the order type of rationals η. Finite big Ramsey degrees for η were exactly calculated by Devlin in [5]. It is immediate from [39] that η1 fails to have finite big Ramsey degrees. Moreover, we extend Devlin's coloring to η1 to show that it witnesses big Ramsey degrees of finite tuples in η on every copy of η in η1, and consequently in L⁎. This work gives additional confirmation that ultraproducts are a suitable environment for studying Ramsey properties of finite and infinite structures.</description><identifier>ISSN: 0168-0072</identifier><identifier>DOI: 10.1016/j.apal.2024.103439</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Big Ramsey degree ; formula omitted ; Mathematics ; Partition property ; Ultraproduct</subject><ispartof>Annals of pure and applied logic, 2024-07, Vol.175 (7), p.103439, Article 103439</ispartof><rights>2024 The Author(s)</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c329t-a9dc81da7e40f4545c0ea0283f3f03a645f8a79e6e905aa45f6e11b77f273d9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168007224000368$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://u-paris.hal.science/hal-04600079$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bartošová, Dana</creatorcontrib><creatorcontrib>Džamonja, Mirna</creatorcontrib><creatorcontrib>Patel, Rehana</creatorcontrib><creatorcontrib>Scow, Lynn</creatorcontrib><title>Big Ramsey degrees in ultraproducts of finite structures</title><title>Annals of pure and applied logic</title><description>We develop a transfer principle of structural Ramsey theory from finite structures to ultraproducts. We show that under certain mild conditions, when a class of finite structures has finite small Ramsey degrees, under the (Generalized) Continuum Hypothesis the ultraproduct has finite big Ramsey degrees for internal colorings. The necessity of restricting to internal colorings is demonstrated by the example of the ultraproduct of finite linear orders. Under CH, this ultraproduct L⁎ has, as a spine, η1, an uncountable analogue of the order type of rationals η. Finite big Ramsey degrees for η were exactly calculated by Devlin in [5]. It is immediate from [39] that η1 fails to have finite big Ramsey degrees. Moreover, we extend Devlin's coloring to η1 to show that it witnesses big Ramsey degrees of finite tuples in η on every copy of η in η1, and consequently in L⁎. This work gives additional confirmation that ultraproducts are a suitable environment for studying Ramsey properties of finite and infinite structures.</description><subject>Big Ramsey degree</subject><subject>formula omitted</subject><subject>Mathematics</subject><subject>Partition property</subject><subject>Ultraproduct</subject><issn>0168-0072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxfegYK1-AU-5ekid_ZNsAl5q0VYoCKLnZdzM1i1pU3bTQr-9GyIePQ3z5v0G3mPsjsOMAy8ftjM8YDsTIFQSpJL1BZukQ5UDaHHFrmPcAkChtJyw6slvsnfcRTpnDW0CUcz8Pju2fcBD6Jqj7WPWucz5ve8pi31IyjFQvGGXDttIt79zyj5fnj8Wq3z9tnxdzNe5laLuc6wbW_EGNSlwqlCFBUIQlXTSgcRSFa5CXVNJNRSIaS2J8y-tndCyqa2csvvx7ze25hD8DsPZdOjNar42gwaqTGl0feLJK0avDV2MgdwfwMEM3ZitGboxQzdm7CZBjyNEKcXJUzDRetpbanwg25um8__hP0PnblE</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Bartošová, Dana</creator><creator>Džamonja, Mirna</creator><creator>Patel, Rehana</creator><creator>Scow, Lynn</creator><general>Elsevier B.V</general><general>Elsevier Masson</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>202407</creationdate><title>Big Ramsey degrees in ultraproducts of finite structures</title><author>Bartošová, Dana ; Džamonja, Mirna ; Patel, Rehana ; Scow, Lynn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-a9dc81da7e40f4545c0ea0283f3f03a645f8a79e6e905aa45f6e11b77f273d9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Big Ramsey degree</topic><topic>formula omitted</topic><topic>Mathematics</topic><topic>Partition property</topic><topic>Ultraproduct</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bartošová, Dana</creatorcontrib><creatorcontrib>Džamonja, Mirna</creatorcontrib><creatorcontrib>Patel, Rehana</creatorcontrib><creatorcontrib>Scow, Lynn</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Annals of pure and applied logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bartošová, Dana</au><au>Džamonja, Mirna</au><au>Patel, Rehana</au><au>Scow, Lynn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Big Ramsey degrees in ultraproducts of finite structures</atitle><jtitle>Annals of pure and applied logic</jtitle><date>2024-07</date><risdate>2024</risdate><volume>175</volume><issue>7</issue><spage>103439</spage><pages>103439-</pages><artnum>103439</artnum><issn>0168-0072</issn><abstract>We develop a transfer principle of structural Ramsey theory from finite structures to ultraproducts. We show that under certain mild conditions, when a class of finite structures has finite small Ramsey degrees, under the (Generalized) Continuum Hypothesis the ultraproduct has finite big Ramsey degrees for internal colorings. The necessity of restricting to internal colorings is demonstrated by the example of the ultraproduct of finite linear orders. Under CH, this ultraproduct L⁎ has, as a spine, η1, an uncountable analogue of the order type of rationals η. Finite big Ramsey degrees for η were exactly calculated by Devlin in [5]. It is immediate from [39] that η1 fails to have finite big Ramsey degrees. Moreover, we extend Devlin's coloring to η1 to show that it witnesses big Ramsey degrees of finite tuples in η on every copy of η in η1, and consequently in L⁎. This work gives additional confirmation that ultraproducts are a suitable environment for studying Ramsey properties of finite and infinite structures.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apal.2024.103439</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-0072
ispartof Annals of pure and applied logic, 2024-07, Vol.175 (7), p.103439, Article 103439
issn 0168-0072
language eng
recordid cdi_hal_primary_oai_HAL_hal_04600079v1
source Elsevier ScienceDirect Journals
subjects Big Ramsey degree
formula omitted
Mathematics
Partition property
Ultraproduct
title Big Ramsey degrees in ultraproducts of finite structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A20%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Big%20Ramsey%20degrees%20in%20ultraproducts%20of%20finite%20structures&rft.jtitle=Annals%20of%20pure%20and%20applied%20logic&rft.au=Barto%C5%A1ov%C3%A1,%20Dana&rft.date=2024-07&rft.volume=175&rft.issue=7&rft.spage=103439&rft.pages=103439-&rft.artnum=103439&rft.issn=0168-0072&rft_id=info:doi/10.1016/j.apal.2024.103439&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04600079v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0168007224000368&rfr_iscdi=true