Quantum control of a cat qubit with bit-flip times exceeding ten seconds
Quantum bits (qubits) are prone to several types of error as the result of uncontrolled interactions with their environment. Common strategies to correct these errors are based on architectures of qubits involving daunting hardware overheads 1 . One possible solution is to build qubits that are inhe...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2024-05, Vol.629 (8013), p.778-783 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 783 |
---|---|
container_issue | 8013 |
container_start_page | 778 |
container_title | Nature (London) |
container_volume | 629 |
creator | Réglade, U. Bocquet, A. Gautier, R. Cohen, J. Marquet, A. Albertinale, E. Pankratova, N. Hallén, M. Rautschke, F. Sellem, L.-A. Rouchon, P. Sarlette, A. Mirrahimi, M. Campagne-Ibarcq, P. Lescanne, R. Jezouin, S. Leghtas, Z. |
description | Quantum bits (qubits) are prone to several types of error as the result of uncontrolled interactions with their environment. Common strategies to correct these errors are based on architectures of qubits involving daunting hardware overheads
1
. One possible solution is to build qubits that are inherently protected against certain types of error, so the overhead required to correct the remaining errors is greatly reduced
2
–
7
. However, this strategy relies on one condition: any quantum manipulations of the qubit must not break the protection that has been so carefully engineered
5
,
8
. A type of qubit known as a cat qubit is encoded in the manifold of metastable states of a quantum dynamical system, and thereby acquires continuous and autonomous protection against bit-flips. Here, in a superconducting-circuit experiment, we implemented a cat qubit with bit-flip times exceeding 10 s. This is an improvement of four orders of magnitude over previously published cat-qubit implementations. We prepared and imaged quantum superposition states, and measured phase-flip times greater than 490 ns. Most importantly, we controlled the phase of these quantum superpositions without breaking the bit-flip protection. This experiment demonstrates the compatibility of quantum control and inherent bit-flip protection at an unprecedented level, showing the viability of these dynamical qubits for future quantum technologies.
A type of qubit that has inherent resistance to bit-flip errors has been manipulated with a bit-flip time of more than 10 s without losing that error protection. |
doi_str_mv | 10.1038/s41586-024-07294-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04590249v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051937610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-2a2706f3323ec8da75cb70a6fef95821fc198a5355ec96589c1d751e7f8291a13</originalsourceid><addsrcrecordid>eNp9kU1rVDEYhUNR7Dj1D7iQgJt2Ec33x7IU2xEGRLDrkMl9095yP6Y3uWr_fTPe2oILVwnJc07enIPQe0Y_MSrs5yyZsppQLgk13EkijtCKSaOJ1Na8QitKuSXUCn2M3uZ8RylVzMg36FhYw6gTfIU23-cwlLnHcRzKNHZ4TDjgGAq-n3dtwb_acovrhqSu3ePS9pAx_I4ATTvc4AIDzlClTT5Br1PoMrx7Wtfo-vLLj4sN2X67-npxviVRUlcID9xQnYTgAqJtglFxZ2jQCZJTlrMUmbNBCaUgOq2si6wxioFJljsWmFijs8X3NnR-P7V9mB78GFq_Od_6wxmVytVI3M8De7qw-2m8nyEX37c5QteFAcY5e1HzcMLomuYaffwHvRvnaag_qZSmkjnFZKX4QsVpzHmC9DwBo_7QiV868XUA_6cTL6row5P1vOuheZb8LaECYgFyvRpuYHp5-z-2j-qUlEw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060419514</pqid></control><display><type>article</type><title>Quantum control of a cat qubit with bit-flip times exceeding ten seconds</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Réglade, U. ; Bocquet, A. ; Gautier, R. ; Cohen, J. ; Marquet, A. ; Albertinale, E. ; Pankratova, N. ; Hallén, M. ; Rautschke, F. ; Sellem, L.-A. ; Rouchon, P. ; Sarlette, A. ; Mirrahimi, M. ; Campagne-Ibarcq, P. ; Lescanne, R. ; Jezouin, S. ; Leghtas, Z.</creator><creatorcontrib>Réglade, U. ; Bocquet, A. ; Gautier, R. ; Cohen, J. ; Marquet, A. ; Albertinale, E. ; Pankratova, N. ; Hallén, M. ; Rautschke, F. ; Sellem, L.-A. ; Rouchon, P. ; Sarlette, A. ; Mirrahimi, M. ; Campagne-Ibarcq, P. ; Lescanne, R. ; Jezouin, S. ; Leghtas, Z.</creatorcontrib><description>Quantum bits (qubits) are prone to several types of error as the result of uncontrolled interactions with their environment. Common strategies to correct these errors are based on architectures of qubits involving daunting hardware overheads
1
. One possible solution is to build qubits that are inherently protected against certain types of error, so the overhead required to correct the remaining errors is greatly reduced
2
–
7
. However, this strategy relies on one condition: any quantum manipulations of the qubit must not break the protection that has been so carefully engineered
5
,
8
. A type of qubit known as a cat qubit is encoded in the manifold of metastable states of a quantum dynamical system, and thereby acquires continuous and autonomous protection against bit-flips. Here, in a superconducting-circuit experiment, we implemented a cat qubit with bit-flip times exceeding 10 s. This is an improvement of four orders of magnitude over previously published cat-qubit implementations. We prepared and imaged quantum superposition states, and measured phase-flip times greater than 490 ns. Most importantly, we controlled the phase of these quantum superpositions without breaking the bit-flip protection. This experiment demonstrates the compatibility of quantum control and inherent bit-flip protection at an unprecedented level, showing the viability of these dynamical qubits for future quantum technologies.
A type of qubit that has inherent resistance to bit-flip errors has been manipulated with a bit-flip time of more than 10 s without losing that error protection.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07294-3</identifier><identifier>PMID: 38710932</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 639/766/483/2802 ; 639/766/483/481 ; Dynamical systems ; Electrons ; Error correction ; Experiments ; Humanities and Social Sciences ; Metastable state ; multidisciplinary ; Physics ; Quantum mechanics ; Quantum Physics ; Qubits (quantum computing) ; Science ; Science (multidisciplinary) ; Tomography</subject><ispartof>Nature (London), 2024-05, Vol.629 (8013), p.778-783</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.. corrected publication 2024</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group May 23, 2024</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-2a2706f3323ec8da75cb70a6fef95821fc198a5355ec96589c1d751e7f8291a13</citedby><cites>FETCH-LOGICAL-c409t-2a2706f3323ec8da75cb70a6fef95821fc198a5355ec96589c1d751e7f8291a13</cites><orcidid>0000-0002-2586-2796 ; 0000-0001-9471-6031 ; 0000-0002-9172-1537 ; 0000-0001-6025-1993 ; 0000-0001-9039-3810 ; 0000-0001-6160-5634 ; 0009-0005-1014-5259 ; 0000-0001-6136-6688 ; 0000-0001-5909-437X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07294-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07294-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38710932$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04590249$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Réglade, U.</creatorcontrib><creatorcontrib>Bocquet, A.</creatorcontrib><creatorcontrib>Gautier, R.</creatorcontrib><creatorcontrib>Cohen, J.</creatorcontrib><creatorcontrib>Marquet, A.</creatorcontrib><creatorcontrib>Albertinale, E.</creatorcontrib><creatorcontrib>Pankratova, N.</creatorcontrib><creatorcontrib>Hallén, M.</creatorcontrib><creatorcontrib>Rautschke, F.</creatorcontrib><creatorcontrib>Sellem, L.-A.</creatorcontrib><creatorcontrib>Rouchon, P.</creatorcontrib><creatorcontrib>Sarlette, A.</creatorcontrib><creatorcontrib>Mirrahimi, M.</creatorcontrib><creatorcontrib>Campagne-Ibarcq, P.</creatorcontrib><creatorcontrib>Lescanne, R.</creatorcontrib><creatorcontrib>Jezouin, S.</creatorcontrib><creatorcontrib>Leghtas, Z.</creatorcontrib><title>Quantum control of a cat qubit with bit-flip times exceeding ten seconds</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Quantum bits (qubits) are prone to several types of error as the result of uncontrolled interactions with their environment. Common strategies to correct these errors are based on architectures of qubits involving daunting hardware overheads
1
. One possible solution is to build qubits that are inherently protected against certain types of error, so the overhead required to correct the remaining errors is greatly reduced
2
–
7
. However, this strategy relies on one condition: any quantum manipulations of the qubit must not break the protection that has been so carefully engineered
5
,
8
. A type of qubit known as a cat qubit is encoded in the manifold of metastable states of a quantum dynamical system, and thereby acquires continuous and autonomous protection against bit-flips. Here, in a superconducting-circuit experiment, we implemented a cat qubit with bit-flip times exceeding 10 s. This is an improvement of four orders of magnitude over previously published cat-qubit implementations. We prepared and imaged quantum superposition states, and measured phase-flip times greater than 490 ns. Most importantly, we controlled the phase of these quantum superpositions without breaking the bit-flip protection. This experiment demonstrates the compatibility of quantum control and inherent bit-flip protection at an unprecedented level, showing the viability of these dynamical qubits for future quantum technologies.
A type of qubit that has inherent resistance to bit-flip errors has been manipulated with a bit-flip time of more than 10 s without losing that error protection.</description><subject>142/126</subject><subject>639/766/483/2802</subject><subject>639/766/483/481</subject><subject>Dynamical systems</subject><subject>Electrons</subject><subject>Error correction</subject><subject>Experiments</subject><subject>Humanities and Social Sciences</subject><subject>Metastable state</subject><subject>multidisciplinary</subject><subject>Physics</subject><subject>Quantum mechanics</subject><subject>Quantum Physics</subject><subject>Qubits (quantum computing)</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Tomography</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rVDEYhUNR7Dj1D7iQgJt2Ec33x7IU2xEGRLDrkMl9095yP6Y3uWr_fTPe2oILVwnJc07enIPQe0Y_MSrs5yyZsppQLgk13EkijtCKSaOJ1Na8QitKuSXUCn2M3uZ8RylVzMg36FhYw6gTfIU23-cwlLnHcRzKNHZ4TDjgGAq-n3dtwb_acovrhqSu3ePS9pAx_I4ATTvc4AIDzlClTT5Br1PoMrx7Wtfo-vLLj4sN2X67-npxviVRUlcID9xQnYTgAqJtglFxZ2jQCZJTlrMUmbNBCaUgOq2si6wxioFJljsWmFijs8X3NnR-P7V9mB78GFq_Od_6wxmVytVI3M8De7qw-2m8nyEX37c5QteFAcY5e1HzcMLomuYaffwHvRvnaag_qZSmkjnFZKX4QsVpzHmC9DwBo_7QiV868XUA_6cTL6row5P1vOuheZb8LaECYgFyvRpuYHp5-z-2j-qUlEw</recordid><startdate>20240523</startdate><enddate>20240523</enddate><creator>Réglade, U.</creator><creator>Bocquet, A.</creator><creator>Gautier, R.</creator><creator>Cohen, J.</creator><creator>Marquet, A.</creator><creator>Albertinale, E.</creator><creator>Pankratova, N.</creator><creator>Hallén, M.</creator><creator>Rautschke, F.</creator><creator>Sellem, L.-A.</creator><creator>Rouchon, P.</creator><creator>Sarlette, A.</creator><creator>Mirrahimi, M.</creator><creator>Campagne-Ibarcq, P.</creator><creator>Lescanne, R.</creator><creator>Jezouin, S.</creator><creator>Leghtas, Z.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2586-2796</orcidid><orcidid>https://orcid.org/0000-0001-9471-6031</orcidid><orcidid>https://orcid.org/0000-0002-9172-1537</orcidid><orcidid>https://orcid.org/0000-0001-6025-1993</orcidid><orcidid>https://orcid.org/0000-0001-9039-3810</orcidid><orcidid>https://orcid.org/0000-0001-6160-5634</orcidid><orcidid>https://orcid.org/0009-0005-1014-5259</orcidid><orcidid>https://orcid.org/0000-0001-6136-6688</orcidid><orcidid>https://orcid.org/0000-0001-5909-437X</orcidid></search><sort><creationdate>20240523</creationdate><title>Quantum control of a cat qubit with bit-flip times exceeding ten seconds</title><author>Réglade, U. ; Bocquet, A. ; Gautier, R. ; Cohen, J. ; Marquet, A. ; Albertinale, E. ; Pankratova, N. ; Hallén, M. ; Rautschke, F. ; Sellem, L.-A. ; Rouchon, P. ; Sarlette, A. ; Mirrahimi, M. ; Campagne-Ibarcq, P. ; Lescanne, R. ; Jezouin, S. ; Leghtas, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-2a2706f3323ec8da75cb70a6fef95821fc198a5355ec96589c1d751e7f8291a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>142/126</topic><topic>639/766/483/2802</topic><topic>639/766/483/481</topic><topic>Dynamical systems</topic><topic>Electrons</topic><topic>Error correction</topic><topic>Experiments</topic><topic>Humanities and Social Sciences</topic><topic>Metastable state</topic><topic>multidisciplinary</topic><topic>Physics</topic><topic>Quantum mechanics</topic><topic>Quantum Physics</topic><topic>Qubits (quantum computing)</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Réglade, U.</creatorcontrib><creatorcontrib>Bocquet, A.</creatorcontrib><creatorcontrib>Gautier, R.</creatorcontrib><creatorcontrib>Cohen, J.</creatorcontrib><creatorcontrib>Marquet, A.</creatorcontrib><creatorcontrib>Albertinale, E.</creatorcontrib><creatorcontrib>Pankratova, N.</creatorcontrib><creatorcontrib>Hallén, M.</creatorcontrib><creatorcontrib>Rautschke, F.</creatorcontrib><creatorcontrib>Sellem, L.-A.</creatorcontrib><creatorcontrib>Rouchon, P.</creatorcontrib><creatorcontrib>Sarlette, A.</creatorcontrib><creatorcontrib>Mirrahimi, M.</creatorcontrib><creatorcontrib>Campagne-Ibarcq, P.</creatorcontrib><creatorcontrib>Lescanne, R.</creatorcontrib><creatorcontrib>Jezouin, S.</creatorcontrib><creatorcontrib>Leghtas, Z.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Réglade, U.</au><au>Bocquet, A.</au><au>Gautier, R.</au><au>Cohen, J.</au><au>Marquet, A.</au><au>Albertinale, E.</au><au>Pankratova, N.</au><au>Hallén, M.</au><au>Rautschke, F.</au><au>Sellem, L.-A.</au><au>Rouchon, P.</au><au>Sarlette, A.</au><au>Mirrahimi, M.</au><au>Campagne-Ibarcq, P.</au><au>Lescanne, R.</au><au>Jezouin, S.</au><au>Leghtas, Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum control of a cat qubit with bit-flip times exceeding ten seconds</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-05-23</date><risdate>2024</risdate><volume>629</volume><issue>8013</issue><spage>778</spage><epage>783</epage><pages>778-783</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Quantum bits (qubits) are prone to several types of error as the result of uncontrolled interactions with their environment. Common strategies to correct these errors are based on architectures of qubits involving daunting hardware overheads
1
. One possible solution is to build qubits that are inherently protected against certain types of error, so the overhead required to correct the remaining errors is greatly reduced
2
–
7
. However, this strategy relies on one condition: any quantum manipulations of the qubit must not break the protection that has been so carefully engineered
5
,
8
. A type of qubit known as a cat qubit is encoded in the manifold of metastable states of a quantum dynamical system, and thereby acquires continuous and autonomous protection against bit-flips. Here, in a superconducting-circuit experiment, we implemented a cat qubit with bit-flip times exceeding 10 s. This is an improvement of four orders of magnitude over previously published cat-qubit implementations. We prepared and imaged quantum superposition states, and measured phase-flip times greater than 490 ns. Most importantly, we controlled the phase of these quantum superpositions without breaking the bit-flip protection. This experiment demonstrates the compatibility of quantum control and inherent bit-flip protection at an unprecedented level, showing the viability of these dynamical qubits for future quantum technologies.
A type of qubit that has inherent resistance to bit-flip errors has been manipulated with a bit-flip time of more than 10 s without losing that error protection.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38710932</pmid><doi>10.1038/s41586-024-07294-3</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2586-2796</orcidid><orcidid>https://orcid.org/0000-0001-9471-6031</orcidid><orcidid>https://orcid.org/0000-0002-9172-1537</orcidid><orcidid>https://orcid.org/0000-0001-6025-1993</orcidid><orcidid>https://orcid.org/0000-0001-9039-3810</orcidid><orcidid>https://orcid.org/0000-0001-6160-5634</orcidid><orcidid>https://orcid.org/0009-0005-1014-5259</orcidid><orcidid>https://orcid.org/0000-0001-6136-6688</orcidid><orcidid>https://orcid.org/0000-0001-5909-437X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2024-05, Vol.629 (8013), p.778-783 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04590249v1 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 142/126 639/766/483/2802 639/766/483/481 Dynamical systems Electrons Error correction Experiments Humanities and Social Sciences Metastable state multidisciplinary Physics Quantum mechanics Quantum Physics Qubits (quantum computing) Science Science (multidisciplinary) Tomography |
title | Quantum control of a cat qubit with bit-flip times exceeding ten seconds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A36%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20control%20of%20a%20cat%20qubit%20with%20bit-flip%20times%20exceeding%20ten%20seconds&rft.jtitle=Nature%20(London)&rft.au=R%C3%A9glade,%20U.&rft.date=2024-05-23&rft.volume=629&rft.issue=8013&rft.spage=778&rft.epage=783&rft.pages=778-783&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07294-3&rft_dat=%3Cproquest_hal_p%3E3051937610%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3060419514&rft_id=info:pmid/38710932&rfr_iscdi=true |