Experimental and numerical study on thin silicon wafer CO2 laser cutting and damage investigation

This study investigates laser-induced damage in thin silicon (Si) wafer ablation both experimentally and numerically. A 40-W continuous-wave CO 2 laser is employed as the volumetric heat source. Experiments are conducted that involve variations in the laser cutting speed from 5 to 20 mm/s and the nu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2024-06, Vol.132 (9-10), p.4857-4884
Hauptverfasser: Moghadasi, Kaveh, Tamrin, Khairul Fikri, Sheikh, Nadeem Ahmed, Kram, Abdul Rahman, Barroy, Pierre, Mahmud, Fahizan, Khan, Amir Azam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4884
container_issue 9-10
container_start_page 4857
container_title International journal of advanced manufacturing technology
container_volume 132
creator Moghadasi, Kaveh
Tamrin, Khairul Fikri
Sheikh, Nadeem Ahmed
Kram, Abdul Rahman
Barroy, Pierre
Mahmud, Fahizan
Khan, Amir Azam
description This study investigates laser-induced damage in thin silicon (Si) wafer ablation both experimentally and numerically. A 40-W continuous-wave CO 2 laser is employed as the volumetric heat source. Experiments are conducted that involve variations in the laser cutting speed from 5 to 20 mm/s and the number of passes from one to three while maintaining a constant laser power of 40 W for investigation. The measured output parameters include surface morphologies, heat-affected zone (HAZ), and kerf width. For the first time, a finite element solution based on the brittle–ductile transition (BDT) phenomenon is introduced to predict temperature-stress gradients in the laser cutting region. Johnson–Cook (J-C) plasticity, along with the introduced damage criteria, are employed to analyse the cutting characteristics. The results show that the lowest CO 2 laser speed and minimal number of passes enhance Si wafer quality. Nevertheless, increasing cutting speed and the number of passes significantly intensify material ablation and oxidisation due to elevated laser heat input. Using optimal parameters, numerical analysis shows a high level of agreement with experimental findings. Transverse/longitudinal stresses correlate with temperature, while the longitudinal stress is substantially lower compared to the transverse stresses due to thermal expansion and the direction of heat transfer. Following that, computed assessments of compressive and tensile stresses are used to refine specific laser parameters and locations for experimental setup.
doi_str_mv 10.1007/s00170-024-13675-9
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04589389v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060930665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-81efddb38ecbab41c4f9df74d823f93ec477be7aa6642301ca250a88524ca1573</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5giMTEY7NixnbGqCkWq1AVm6-I4qavUKXFS4N_jNgg2Fp_v9L2nu4fQLSUPlBD5GAihkmCSckyZkBnOz9CEcsYwIzQ7RxOSCoWZFOoSXYWwjbigQk0QLD73tnM763toEvBl4oddHJjYhX4ov5LWJ_3G-SS4xpnYfEBlu2S-TpMGQvyZoe-dr0_aEnZQ28T5gw29q6F3rb9GFxU0wd781Cl6e1q8zpd4tX5-mc9W2DDCe6yorcqyYMqaAgpODa_yspK8VCmrcmYNl7KwEkAInsajDKQZAaWylBugmWRTdD_6bqDR-3gSdF-6BaeXs5U-zgjPVM5UfqCRvRvZfde-D3FXvW2Hzsf1NCOC5PERWaTSkTJdG0Jnq19bSvQxdj3GrmPs-hS7zqOIjaIQYV_b7s_6H9U33F6Faw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060930665</pqid></control><display><type>article</type><title>Experimental and numerical study on thin silicon wafer CO2 laser cutting and damage investigation</title><source>Springer Nature - Complete Springer Journals</source><creator>Moghadasi, Kaveh ; Tamrin, Khairul Fikri ; Sheikh, Nadeem Ahmed ; Kram, Abdul Rahman ; Barroy, Pierre ; Mahmud, Fahizan ; Khan, Amir Azam</creator><creatorcontrib>Moghadasi, Kaveh ; Tamrin, Khairul Fikri ; Sheikh, Nadeem Ahmed ; Kram, Abdul Rahman ; Barroy, Pierre ; Mahmud, Fahizan ; Khan, Amir Azam</creatorcontrib><description>This study investigates laser-induced damage in thin silicon (Si) wafer ablation both experimentally and numerically. A 40-W continuous-wave CO 2 laser is employed as the volumetric heat source. Experiments are conducted that involve variations in the laser cutting speed from 5 to 20 mm/s and the number of passes from one to three while maintaining a constant laser power of 40 W for investigation. The measured output parameters include surface morphologies, heat-affected zone (HAZ), and kerf width. For the first time, a finite element solution based on the brittle–ductile transition (BDT) phenomenon is introduced to predict temperature-stress gradients in the laser cutting region. Johnson–Cook (J-C) plasticity, along with the introduced damage criteria, are employed to analyse the cutting characteristics. The results show that the lowest CO 2 laser speed and minimal number of passes enhance Si wafer quality. Nevertheless, increasing cutting speed and the number of passes significantly intensify material ablation and oxidisation due to elevated laser heat input. Using optimal parameters, numerical analysis shows a high level of agreement with experimental findings. Transverse/longitudinal stresses correlate with temperature, while the longitudinal stress is substantially lower compared to the transverse stresses due to thermal expansion and the direction of heat transfer. Following that, computed assessments of compressive and tensile stresses are used to refine specific laser parameters and locations for experimental setup.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-024-13675-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Ablation ; Ablative materials ; CAE) and Design ; Carbon dioxide ; Carbon dioxide lasers ; Compressive properties ; Computer-Aided Engineering (CAD ; Condensed Matter ; Continuous radiation ; Cutting parameters ; Cutting speed ; Damage assessment ; Ductile-brittle transition ; Engineering ; Heat ; Heat affected zone ; Industrial and Production Engineering ; Kerf ; Laser beam cutting ; Laser damage ; Lasers ; Mathematical analysis ; Mechanical Engineering ; Media Management ; Numerical analysis ; Original Article ; Physics ; Silicon ; Silicon wafers ; Stresses ; Thermal expansion</subject><ispartof>International journal of advanced manufacturing technology, 2024-06, Vol.132 (9-10), p.4857-4884</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c304t-81efddb38ecbab41c4f9df74d823f93ec477be7aa6642301ca250a88524ca1573</cites><orcidid>0000-0003-2180-9610 ; 0000-0003-3338-404X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-024-13675-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-024-13675-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04589389$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Moghadasi, Kaveh</creatorcontrib><creatorcontrib>Tamrin, Khairul Fikri</creatorcontrib><creatorcontrib>Sheikh, Nadeem Ahmed</creatorcontrib><creatorcontrib>Kram, Abdul Rahman</creatorcontrib><creatorcontrib>Barroy, Pierre</creatorcontrib><creatorcontrib>Mahmud, Fahizan</creatorcontrib><creatorcontrib>Khan, Amir Azam</creatorcontrib><title>Experimental and numerical study on thin silicon wafer CO2 laser cutting and damage investigation</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>This study investigates laser-induced damage in thin silicon (Si) wafer ablation both experimentally and numerically. A 40-W continuous-wave CO 2 laser is employed as the volumetric heat source. Experiments are conducted that involve variations in the laser cutting speed from 5 to 20 mm/s and the number of passes from one to three while maintaining a constant laser power of 40 W for investigation. The measured output parameters include surface morphologies, heat-affected zone (HAZ), and kerf width. For the first time, a finite element solution based on the brittle–ductile transition (BDT) phenomenon is introduced to predict temperature-stress gradients in the laser cutting region. Johnson–Cook (J-C) plasticity, along with the introduced damage criteria, are employed to analyse the cutting characteristics. The results show that the lowest CO 2 laser speed and minimal number of passes enhance Si wafer quality. Nevertheless, increasing cutting speed and the number of passes significantly intensify material ablation and oxidisation due to elevated laser heat input. Using optimal parameters, numerical analysis shows a high level of agreement with experimental findings. Transverse/longitudinal stresses correlate with temperature, while the longitudinal stress is substantially lower compared to the transverse stresses due to thermal expansion and the direction of heat transfer. Following that, computed assessments of compressive and tensile stresses are used to refine specific laser parameters and locations for experimental setup.</description><subject>Ablation</subject><subject>Ablative materials</subject><subject>CAE) and Design</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide lasers</subject><subject>Compressive properties</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Condensed Matter</subject><subject>Continuous radiation</subject><subject>Cutting parameters</subject><subject>Cutting speed</subject><subject>Damage assessment</subject><subject>Ductile-brittle transition</subject><subject>Engineering</subject><subject>Heat</subject><subject>Heat affected zone</subject><subject>Industrial and Production Engineering</subject><subject>Kerf</subject><subject>Laser beam cutting</subject><subject>Laser damage</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Numerical analysis</subject><subject>Original Article</subject><subject>Physics</subject><subject>Silicon</subject><subject>Silicon wafers</subject><subject>Stresses</subject><subject>Thermal expansion</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwB5giMTEY7NixnbGqCkWq1AVm6-I4qavUKXFS4N_jNgg2Fp_v9L2nu4fQLSUPlBD5GAihkmCSckyZkBnOz9CEcsYwIzQ7RxOSCoWZFOoSXYWwjbigQk0QLD73tnM763toEvBl4oddHJjYhX4ov5LWJ_3G-SS4xpnYfEBlu2S-TpMGQvyZoe-dr0_aEnZQ28T5gw29q6F3rb9GFxU0wd781Cl6e1q8zpd4tX5-mc9W2DDCe6yorcqyYMqaAgpODa_yspK8VCmrcmYNl7KwEkAInsajDKQZAaWylBugmWRTdD_6bqDR-3gSdF-6BaeXs5U-zgjPVM5UfqCRvRvZfde-D3FXvW2Hzsf1NCOC5PERWaTSkTJdG0Jnq19bSvQxdj3GrmPs-hS7zqOIjaIQYV_b7s_6H9U33F6Faw</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Moghadasi, Kaveh</creator><creator>Tamrin, Khairul Fikri</creator><creator>Sheikh, Nadeem Ahmed</creator><creator>Kram, Abdul Rahman</creator><creator>Barroy, Pierre</creator><creator>Mahmud, Fahizan</creator><creator>Khan, Amir Azam</creator><general>Springer London</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2180-9610</orcidid><orcidid>https://orcid.org/0000-0003-3338-404X</orcidid></search><sort><creationdate>20240601</creationdate><title>Experimental and numerical study on thin silicon wafer CO2 laser cutting and damage investigation</title><author>Moghadasi, Kaveh ; Tamrin, Khairul Fikri ; Sheikh, Nadeem Ahmed ; Kram, Abdul Rahman ; Barroy, Pierre ; Mahmud, Fahizan ; Khan, Amir Azam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-81efddb38ecbab41c4f9df74d823f93ec477be7aa6642301ca250a88524ca1573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Ablative materials</topic><topic>CAE) and Design</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide lasers</topic><topic>Compressive properties</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Condensed Matter</topic><topic>Continuous radiation</topic><topic>Cutting parameters</topic><topic>Cutting speed</topic><topic>Damage assessment</topic><topic>Ductile-brittle transition</topic><topic>Engineering</topic><topic>Heat</topic><topic>Heat affected zone</topic><topic>Industrial and Production Engineering</topic><topic>Kerf</topic><topic>Laser beam cutting</topic><topic>Laser damage</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Numerical analysis</topic><topic>Original Article</topic><topic>Physics</topic><topic>Silicon</topic><topic>Silicon wafers</topic><topic>Stresses</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moghadasi, Kaveh</creatorcontrib><creatorcontrib>Tamrin, Khairul Fikri</creatorcontrib><creatorcontrib>Sheikh, Nadeem Ahmed</creatorcontrib><creatorcontrib>Kram, Abdul Rahman</creatorcontrib><creatorcontrib>Barroy, Pierre</creatorcontrib><creatorcontrib>Mahmud, Fahizan</creatorcontrib><creatorcontrib>Khan, Amir Azam</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moghadasi, Kaveh</au><au>Tamrin, Khairul Fikri</au><au>Sheikh, Nadeem Ahmed</au><au>Kram, Abdul Rahman</au><au>Barroy, Pierre</au><au>Mahmud, Fahizan</au><au>Khan, Amir Azam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and numerical study on thin silicon wafer CO2 laser cutting and damage investigation</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>132</volume><issue>9-10</issue><spage>4857</spage><epage>4884</epage><pages>4857-4884</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>This study investigates laser-induced damage in thin silicon (Si) wafer ablation both experimentally and numerically. A 40-W continuous-wave CO 2 laser is employed as the volumetric heat source. Experiments are conducted that involve variations in the laser cutting speed from 5 to 20 mm/s and the number of passes from one to three while maintaining a constant laser power of 40 W for investigation. The measured output parameters include surface morphologies, heat-affected zone (HAZ), and kerf width. For the first time, a finite element solution based on the brittle–ductile transition (BDT) phenomenon is introduced to predict temperature-stress gradients in the laser cutting region. Johnson–Cook (J-C) plasticity, along with the introduced damage criteria, are employed to analyse the cutting characteristics. The results show that the lowest CO 2 laser speed and minimal number of passes enhance Si wafer quality. Nevertheless, increasing cutting speed and the number of passes significantly intensify material ablation and oxidisation due to elevated laser heat input. Using optimal parameters, numerical analysis shows a high level of agreement with experimental findings. Transverse/longitudinal stresses correlate with temperature, while the longitudinal stress is substantially lower compared to the transverse stresses due to thermal expansion and the direction of heat transfer. Following that, computed assessments of compressive and tensile stresses are used to refine specific laser parameters and locations for experimental setup.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-024-13675-9</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-2180-9610</orcidid><orcidid>https://orcid.org/0000-0003-3338-404X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2024-06, Vol.132 (9-10), p.4857-4884
issn 0268-3768
1433-3015
language eng
recordid cdi_hal_primary_oai_HAL_hal_04589389v1
source Springer Nature - Complete Springer Journals
subjects Ablation
Ablative materials
CAE) and Design
Carbon dioxide
Carbon dioxide lasers
Compressive properties
Computer-Aided Engineering (CAD
Condensed Matter
Continuous radiation
Cutting parameters
Cutting speed
Damage assessment
Ductile-brittle transition
Engineering
Heat
Heat affected zone
Industrial and Production Engineering
Kerf
Laser beam cutting
Laser damage
Lasers
Mathematical analysis
Mechanical Engineering
Media Management
Numerical analysis
Original Article
Physics
Silicon
Silicon wafers
Stresses
Thermal expansion
title Experimental and numerical study on thin silicon wafer CO2 laser cutting and damage investigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A30%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20numerical%20study%20on%20thin%20silicon%20wafer%20CO2%20laser%20cutting%20and%20damage%20investigation&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Moghadasi,%20Kaveh&rft.date=2024-06-01&rft.volume=132&rft.issue=9-10&rft.spage=4857&rft.epage=4884&rft.pages=4857-4884&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-024-13675-9&rft_dat=%3Cproquest_hal_p%3E3060930665%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3060930665&rft_id=info:pmid/&rfr_iscdi=true