Mass models of disc galaxies from the DiskMass Survey in modified Newtonian dynamics
This article explores the agreement between the predictions of modified Newtonian dynamics (MOND) and the rotation curves and stellar velocity dispersion profiles measured by the DiskMass Survey (DMS). A bulge–disk decomposition was made for each of the thirty published galaxies, and a MOND Poisson...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2015-08, Vol.451 (4), p.3551-3580 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3580 |
---|---|
container_issue | 4 |
container_start_page | 3551 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 451 |
creator | Angus, G. W. Gentile, G. Swaters, R. Famaey, B. Diaferio, A. McGaugh, S. S. Heyden, K. J. van der |
description | This article explores the agreement between the predictions of modified Newtonian dynamics (MOND) and the rotation curves and stellar velocity dispersion profiles measured by the DiskMass Survey (DMS). A bulge–disk decomposition was made for each of the thirty published galaxies, and a MOND Poisson solver was used to simultaneously compute, from the baryonic mass distributions, model rotation curves and vertical velocity dispersion profiles, which were compared to the measured values. The two main free parameters, the stellar disk's mass-to-light ratio (M/L) and its exponential scaleheight (h
z
), were estimated by Markov Chain Monte Carlo modelling. The average best-fitting K-band stellar mass-to-light ratio was M/L ≃ 0.55 ± 0.15. However, to match the DMS data, the vertical scaleheights would have to be in the range h
z
= 200–400 pc which is a factor of 2 lower than those derived from observations of edge-on galaxies with a similar scalelength. The reason is that modified gravity versions of MOND characteristically require a larger M/L to fit the rotation curve in the absence of dark matter and therefore predict a stronger vertical gravitational field than Newtonian models. It was found that changing the MOND acceleration parameter, the shape of the velocity dispersion ellipsoid, the adopted vertical distribution of stars, as well as the galaxy inclination, within any realistic range, all had little impact on these results. |
doi_str_mv | 10.1093/mnras/stv1132 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04587862v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stv1132</oup_id><sourcerecordid>1709168659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-3866f88835884d07df31f3421ea8eeacad043aba2ce97525e706aca9b55187653</originalsourceid><addsrcrecordid>eNqN0TtPwzAUBWALgUQpjOyWWGAI9Y3j11jxKlKBAZgtkzjgksTFTgr996S0AokFJktX37XO1UHoEMgpEEVHdRNMHMV2AUDTLTQAylmSKs630YAQyhIpAHbRXowzQkhGUz5ADzcmRlz7wlYR-xIXLub42VTmw9mIy-Br3L5YfO7i65e878LCLrFrVjuudLbAt_a99Y0zDS6WjaldHvfRTmmqaA827xA9Xl48nE2S6d3V9dl4muQZFW1CJeellJIyKbOCiKKkUNIsBWuktSY3RR_SPJk0t0qwlFlBeD9VT4yBFJzRITpZ__tiKj0PrjZhqb1xejKe6tWMZEwKydMF9PZ4befBv3U2trruT7VVZRrru6hBUEKYApb-gxIFXHKmenr0i858F5r-aA1cSVCCC9GrZK3y4GMMtvwOC0SvqtNf1elNdT8BfDf_g34CbE2Z1g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1698197677</pqid></control><display><type>article</type><title>Mass models of disc galaxies from the DiskMass Survey in modified Newtonian dynamics</title><source>Oxford Journals Open Access Collection</source><creator>Angus, G. W. ; Gentile, G. ; Swaters, R. ; Famaey, B. ; Diaferio, A. ; McGaugh, S. S. ; Heyden, K. J. van der</creator><creatorcontrib>Angus, G. W. ; Gentile, G. ; Swaters, R. ; Famaey, B. ; Diaferio, A. ; McGaugh, S. S. ; Heyden, K. J. van der</creatorcontrib><description>This article explores the agreement between the predictions of modified Newtonian dynamics (MOND) and the rotation curves and stellar velocity dispersion profiles measured by the DiskMass Survey (DMS). A bulge–disk decomposition was made for each of the thirty published galaxies, and a MOND Poisson solver was used to simultaneously compute, from the baryonic mass distributions, model rotation curves and vertical velocity dispersion profiles, which were compared to the measured values. The two main free parameters, the stellar disk's mass-to-light ratio (M/L) and its exponential scaleheight (h
z
), were estimated by Markov Chain Monte Carlo modelling. The average best-fitting K-band stellar mass-to-light ratio was M/L ≃ 0.55 ± 0.15. However, to match the DMS data, the vertical scaleheights would have to be in the range h
z
= 200–400 pc which is a factor of 2 lower than those derived from observations of edge-on galaxies with a similar scalelength. The reason is that modified gravity versions of MOND characteristically require a larger M/L to fit the rotation curve in the absence of dark matter and therefore predict a stronger vertical gravitational field than Newtonian models. It was found that changing the MOND acceleration parameter, the shape of the velocity dispersion ellipsoid, the adopted vertical distribution of stars, as well as the galaxy inclination, within any realistic range, all had little impact on these results.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stv1132</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Acceleration ; Astronomical models ; Astrophysics ; Dark matter ; Dispersions ; Dynamics ; Galaxies ; Markov analysis ; Mathematical models ; Monte Carlo methods ; Monte Carlo simulation ; Sciences of the Universe ; Star & galaxy formation ; Symbols ; Velocity</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2015-08, Vol.451 (4), p.3551-3580</ispartof><rights>2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2015</rights><rights>Copyright Oxford University Press, UK Aug 21, 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-3866f88835884d07df31f3421ea8eeacad043aba2ce97525e706aca9b55187653</citedby><cites>FETCH-LOGICAL-c437t-3866f88835884d07df31f3421ea8eeacad043aba2ce97525e706aca9b55187653</cites><orcidid>0000-0003-3180-9825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stv1132$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://hal.science/hal-04587862$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Angus, G. W.</creatorcontrib><creatorcontrib>Gentile, G.</creatorcontrib><creatorcontrib>Swaters, R.</creatorcontrib><creatorcontrib>Famaey, B.</creatorcontrib><creatorcontrib>Diaferio, A.</creatorcontrib><creatorcontrib>McGaugh, S. S.</creatorcontrib><creatorcontrib>Heyden, K. J. van der</creatorcontrib><title>Mass models of disc galaxies from the DiskMass Survey in modified Newtonian dynamics</title><title>Monthly notices of the Royal Astronomical Society</title><description>This article explores the agreement between the predictions of modified Newtonian dynamics (MOND) and the rotation curves and stellar velocity dispersion profiles measured by the DiskMass Survey (DMS). A bulge–disk decomposition was made for each of the thirty published galaxies, and a MOND Poisson solver was used to simultaneously compute, from the baryonic mass distributions, model rotation curves and vertical velocity dispersion profiles, which were compared to the measured values. The two main free parameters, the stellar disk's mass-to-light ratio (M/L) and its exponential scaleheight (h
z
), were estimated by Markov Chain Monte Carlo modelling. The average best-fitting K-band stellar mass-to-light ratio was M/L ≃ 0.55 ± 0.15. However, to match the DMS data, the vertical scaleheights would have to be in the range h
z
= 200–400 pc which is a factor of 2 lower than those derived from observations of edge-on galaxies with a similar scalelength. The reason is that modified gravity versions of MOND characteristically require a larger M/L to fit the rotation curve in the absence of dark matter and therefore predict a stronger vertical gravitational field than Newtonian models. It was found that changing the MOND acceleration parameter, the shape of the velocity dispersion ellipsoid, the adopted vertical distribution of stars, as well as the galaxy inclination, within any realistic range, all had little impact on these results.</description><subject>Acceleration</subject><subject>Astronomical models</subject><subject>Astrophysics</subject><subject>Dark matter</subject><subject>Dispersions</subject><subject>Dynamics</subject><subject>Galaxies</subject><subject>Markov analysis</subject><subject>Mathematical models</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Sciences of the Universe</subject><subject>Star & galaxy formation</subject><subject>Symbols</subject><subject>Velocity</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0TtPwzAUBWALgUQpjOyWWGAI9Y3j11jxKlKBAZgtkzjgksTFTgr996S0AokFJktX37XO1UHoEMgpEEVHdRNMHMV2AUDTLTQAylmSKs630YAQyhIpAHbRXowzQkhGUz5ADzcmRlz7wlYR-xIXLub42VTmw9mIy-Br3L5YfO7i65e878LCLrFrVjuudLbAt_a99Y0zDS6WjaldHvfRTmmqaA827xA9Xl48nE2S6d3V9dl4muQZFW1CJeellJIyKbOCiKKkUNIsBWuktSY3RR_SPJk0t0qwlFlBeD9VT4yBFJzRITpZ__tiKj0PrjZhqb1xejKe6tWMZEwKydMF9PZ4befBv3U2trruT7VVZRrru6hBUEKYApb-gxIFXHKmenr0i858F5r-aA1cSVCCC9GrZK3y4GMMtvwOC0SvqtNf1elNdT8BfDf_g34CbE2Z1g</recordid><startdate>20150821</startdate><enddate>20150821</enddate><creator>Angus, G. W.</creator><creator>Gentile, G.</creator><creator>Swaters, R.</creator><creator>Famaey, B.</creator><creator>Diaferio, A.</creator><creator>McGaugh, S. S.</creator><creator>Heyden, K. J. van der</creator><general>Oxford University Press</general><general>Oxford University Press (OUP): Policy P - Oxford Open Option A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3180-9825</orcidid></search><sort><creationdate>20150821</creationdate><title>Mass models of disc galaxies from the DiskMass Survey in modified Newtonian dynamics</title><author>Angus, G. W. ; Gentile, G. ; Swaters, R. ; Famaey, B. ; Diaferio, A. ; McGaugh, S. S. ; Heyden, K. J. van der</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-3866f88835884d07df31f3421ea8eeacad043aba2ce97525e706aca9b55187653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acceleration</topic><topic>Astronomical models</topic><topic>Astrophysics</topic><topic>Dark matter</topic><topic>Dispersions</topic><topic>Dynamics</topic><topic>Galaxies</topic><topic>Markov analysis</topic><topic>Mathematical models</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Sciences of the Universe</topic><topic>Star & galaxy formation</topic><topic>Symbols</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angus, G. W.</creatorcontrib><creatorcontrib>Gentile, G.</creatorcontrib><creatorcontrib>Swaters, R.</creatorcontrib><creatorcontrib>Famaey, B.</creatorcontrib><creatorcontrib>Diaferio, A.</creatorcontrib><creatorcontrib>McGaugh, S. S.</creatorcontrib><creatorcontrib>Heyden, K. J. van der</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Angus, G. W.</au><au>Gentile, G.</au><au>Swaters, R.</au><au>Famaey, B.</au><au>Diaferio, A.</au><au>McGaugh, S. S.</au><au>Heyden, K. J. van der</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mass models of disc galaxies from the DiskMass Survey in modified Newtonian dynamics</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2015-08-21</date><risdate>2015</risdate><volume>451</volume><issue>4</issue><spage>3551</spage><epage>3580</epage><pages>3551-3580</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>This article explores the agreement between the predictions of modified Newtonian dynamics (MOND) and the rotation curves and stellar velocity dispersion profiles measured by the DiskMass Survey (DMS). A bulge–disk decomposition was made for each of the thirty published galaxies, and a MOND Poisson solver was used to simultaneously compute, from the baryonic mass distributions, model rotation curves and vertical velocity dispersion profiles, which were compared to the measured values. The two main free parameters, the stellar disk's mass-to-light ratio (M/L) and its exponential scaleheight (h
z
), were estimated by Markov Chain Monte Carlo modelling. The average best-fitting K-band stellar mass-to-light ratio was M/L ≃ 0.55 ± 0.15. However, to match the DMS data, the vertical scaleheights would have to be in the range h
z
= 200–400 pc which is a factor of 2 lower than those derived from observations of edge-on galaxies with a similar scalelength. The reason is that modified gravity versions of MOND characteristically require a larger M/L to fit the rotation curve in the absence of dark matter and therefore predict a stronger vertical gravitational field than Newtonian models. It was found that changing the MOND acceleration parameter, the shape of the velocity dispersion ellipsoid, the adopted vertical distribution of stars, as well as the galaxy inclination, within any realistic range, all had little impact on these results.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stv1132</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0003-3180-9825</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2015-08, Vol.451 (4), p.3551-3580 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04587862v1 |
source | Oxford Journals Open Access Collection |
subjects | Acceleration Astronomical models Astrophysics Dark matter Dispersions Dynamics Galaxies Markov analysis Mathematical models Monte Carlo methods Monte Carlo simulation Sciences of the Universe Star & galaxy formation Symbols Velocity |
title | Mass models of disc galaxies from the DiskMass Survey in modified Newtonian dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T18%3A33%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mass%20models%20of%20disc%20galaxies%20from%20the%20DiskMass%20Survey%20in%20modified%20Newtonian%20dynamics&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Angus,%20G.%20W.&rft.date=2015-08-21&rft.volume=451&rft.issue=4&rft.spage=3551&rft.epage=3580&rft.pages=3551-3580&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stv1132&rft_dat=%3Cproquest_TOX%3E1709168659%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1698197677&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stv1132&rfr_iscdi=true |