Carbon‐Supported Ru‐Ni and Ru‐W Catalysts for the Transformation of Hydroxyacetone and Saccharides into Glycol‐Derived Primary Amines

Nitrogen‐containing molecules are used for the synthesis of polymers, surfactants, agrochemicals, and dyes. In the context of green chemistry, it is important to form such compounds from bioresource. Short‐chain primary amines are of interest for the polymer industry, like 2‐aminopropanol, 1‐aminopr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2024-06, Vol.17 (11), p.e202400540-n/a
Hauptverfasser: Boulos, Joseph, Goc, Firat, Vandenbrouck, Tom, Perret, Noémie, Dhainaut, Jérémy, Royer, Sébastien, Rataboul, Franck
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page e202400540
container_title ChemSusChem
container_volume 17
creator Boulos, Joseph
Goc, Firat
Vandenbrouck, Tom
Perret, Noémie
Dhainaut, Jérémy
Royer, Sébastien
Rataboul, Franck
description Nitrogen‐containing molecules are used for the synthesis of polymers, surfactants, agrochemicals, and dyes. In the context of green chemistry, it is important to form such compounds from bioresource. Short‐chain primary amines are of interest for the polymer industry, like 2‐aminopropanol, 1‐aminopropan‐2‐ol, and 1,2‐diaminopropane. These amines can be formed through the amination of oxygenated substrates, preferably in aqueous phase. This is possible with heterogeneous catalysts, however, effective systems that allow reactions under mild conditions are lacking. We report an efficient catalyst Ru−Ni/AC for the reductive amination of hydroxyacetone into 2‐aminopropanol. The catalyst has been reused during 3 cycles demonstrating a good stability. As a prospective study, extension to the reactivity of (poly)carbohydrates has been realized. Despite a lesser efficiency, 2‐aminopropanol (9 % yield of amines) has been formed from fructose, the first example from a carbohydrate. This was possible using a 7.5 %Ru‐36 %WxC/AC catalyst, composition allowing a one‐pot retro‐aldol cleavage into hydroxyacetone and reductive amination. The transformation of cellulose through sequential reactions with a combination of 30 %W2C/AC and 7.5 %Ru‐36 %WxC/AC system gave 2 % of 2‐aminopropanol, corresponding to the first example of the formation of this amine from cellulose with heterogeneous catalysts. The efficiency and stability of a 4.5 %Ru‐4.5 %Ni/AC catalyst for the reductive amination of hydroxyacetone and biosourced substrates into primary amines is presented.
doi_str_mv 10.1002/cssc.202400540
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04581316v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3033006449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3620-fd17cf4f1c1d6ef27716bc7012b0ba465fa5b7e3846ec2ec4aa88d8967a753a83</originalsourceid><addsrcrecordid>eNqFkc-O0zAQxi0EYpeFK0dkiQscWuz4T5JjFWCLVAGii-BmTRxH9Sqxu3aykBsvgMQz8iS4pBSJC6eZsX7zzXg-hB5TsqSEZC90jHqZkYwTIji5g85pIflCSP757iln9Aw9iPGaEElKKe-jM1aIPJOFOEffKwi1dz-__diO-70Pg2nwhzGVby0Gd8w_4QoG6KY4RNz6gIedwVcBXExFD4P1DvsWr6cm-K8TaDN4Z353b0HrHQTbmIitGzy-7CbtuyT50gR7m2a9D7aHMOFVb52JD9G9FrpoHh3jBfr4-tVVtV5s3l2-qVabhWYyI4u2oblueUs1baRpszynstY5oVlNauBStCDq3LCCS6MzozlAUTRFKXPIBYOCXaDns-4OOrWfV1AerFqvNurwRrgoKKPylib22czug78ZTRxUb6M2XQfO-DEqRhhLl-W8TOjTf9BrPwaXfpIoKcpS8DxL1HKmdPAxBtOeNqBEHUxVB1PVydTU8OQoO9a9aU74HxcTUM7AF9uZ6T9yqtpuq7_ivwCqQbLo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065995472</pqid></control><display><type>article</type><title>Carbon‐Supported Ru‐Ni and Ru‐W Catalysts for the Transformation of Hydroxyacetone and Saccharides into Glycol‐Derived Primary Amines</title><source>Wiley Online Library All Journals</source><creator>Boulos, Joseph ; Goc, Firat ; Vandenbrouck, Tom ; Perret, Noémie ; Dhainaut, Jérémy ; Royer, Sébastien ; Rataboul, Franck</creator><creatorcontrib>Boulos, Joseph ; Goc, Firat ; Vandenbrouck, Tom ; Perret, Noémie ; Dhainaut, Jérémy ; Royer, Sébastien ; Rataboul, Franck</creatorcontrib><description>Nitrogen‐containing molecules are used for the synthesis of polymers, surfactants, agrochemicals, and dyes. In the context of green chemistry, it is important to form such compounds from bioresource. Short‐chain primary amines are of interest for the polymer industry, like 2‐aminopropanol, 1‐aminopropan‐2‐ol, and 1,2‐diaminopropane. These amines can be formed through the amination of oxygenated substrates, preferably in aqueous phase. This is possible with heterogeneous catalysts, however, effective systems that allow reactions under mild conditions are lacking. We report an efficient catalyst Ru−Ni/AC for the reductive amination of hydroxyacetone into 2‐aminopropanol. The catalyst has been reused during 3 cycles demonstrating a good stability. As a prospective study, extension to the reactivity of (poly)carbohydrates has been realized. Despite a lesser efficiency, 2‐aminopropanol (9 % yield of amines) has been formed from fructose, the first example from a carbohydrate. This was possible using a 7.5 %Ru‐36 %WxC/AC catalyst, composition allowing a one‐pot retro‐aldol cleavage into hydroxyacetone and reductive amination. The transformation of cellulose through sequential reactions with a combination of 30 %W2C/AC and 7.5 %Ru‐36 %WxC/AC system gave 2 % of 2‐aminopropanol, corresponding to the first example of the formation of this amine from cellulose with heterogeneous catalysts. The efficiency and stability of a 4.5 %Ru‐4.5 %Ni/AC catalyst for the reductive amination of hydroxyacetone and biosourced substrates into primary amines is presented.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.202400540</identifier><identifier>PMID: 38572685</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>2-Aminopropanol ; Agrochemicals ; Aldehydes ; Amines ; Ammonia ; Carbohydrates ; Catalysis ; Catalysts ; Cellulose ; Chemical Sciences ; Chemical synthesis ; Heterogeneous catalysis ; Reductive amination ; Substrates ; System effectiveness</subject><ispartof>ChemSusChem, 2024-06, Vol.17 (11), p.e202400540-n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3620-fd17cf4f1c1d6ef27716bc7012b0ba465fa5b7e3846ec2ec4aa88d8967a753a83</cites><orcidid>0000-0002-4299-5937 ; 0000-0002-5635-0144 ; 0000-0002-1035-0114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.202400540$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.202400540$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38572685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lille.fr/hal-04581316$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boulos, Joseph</creatorcontrib><creatorcontrib>Goc, Firat</creatorcontrib><creatorcontrib>Vandenbrouck, Tom</creatorcontrib><creatorcontrib>Perret, Noémie</creatorcontrib><creatorcontrib>Dhainaut, Jérémy</creatorcontrib><creatorcontrib>Royer, Sébastien</creatorcontrib><creatorcontrib>Rataboul, Franck</creatorcontrib><title>Carbon‐Supported Ru‐Ni and Ru‐W Catalysts for the Transformation of Hydroxyacetone and Saccharides into Glycol‐Derived Primary Amines</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>Nitrogen‐containing molecules are used for the synthesis of polymers, surfactants, agrochemicals, and dyes. In the context of green chemistry, it is important to form such compounds from bioresource. Short‐chain primary amines are of interest for the polymer industry, like 2‐aminopropanol, 1‐aminopropan‐2‐ol, and 1,2‐diaminopropane. These amines can be formed through the amination of oxygenated substrates, preferably in aqueous phase. This is possible with heterogeneous catalysts, however, effective systems that allow reactions under mild conditions are lacking. We report an efficient catalyst Ru−Ni/AC for the reductive amination of hydroxyacetone into 2‐aminopropanol. The catalyst has been reused during 3 cycles demonstrating a good stability. As a prospective study, extension to the reactivity of (poly)carbohydrates has been realized. Despite a lesser efficiency, 2‐aminopropanol (9 % yield of amines) has been formed from fructose, the first example from a carbohydrate. This was possible using a 7.5 %Ru‐36 %WxC/AC catalyst, composition allowing a one‐pot retro‐aldol cleavage into hydroxyacetone and reductive amination. The transformation of cellulose through sequential reactions with a combination of 30 %W2C/AC and 7.5 %Ru‐36 %WxC/AC system gave 2 % of 2‐aminopropanol, corresponding to the first example of the formation of this amine from cellulose with heterogeneous catalysts. The efficiency and stability of a 4.5 %Ru‐4.5 %Ni/AC catalyst for the reductive amination of hydroxyacetone and biosourced substrates into primary amines is presented.</description><subject>2-Aminopropanol</subject><subject>Agrochemicals</subject><subject>Aldehydes</subject><subject>Amines</subject><subject>Ammonia</subject><subject>Carbohydrates</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Cellulose</subject><subject>Chemical Sciences</subject><subject>Chemical synthesis</subject><subject>Heterogeneous catalysis</subject><subject>Reductive amination</subject><subject>Substrates</subject><subject>System effectiveness</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc-O0zAQxi0EYpeFK0dkiQscWuz4T5JjFWCLVAGii-BmTRxH9Sqxu3aykBsvgMQz8iS4pBSJC6eZsX7zzXg-hB5TsqSEZC90jHqZkYwTIji5g85pIflCSP757iln9Aw9iPGaEElKKe-jM1aIPJOFOEffKwi1dz-__diO-70Pg2nwhzGVby0Gd8w_4QoG6KY4RNz6gIedwVcBXExFD4P1DvsWr6cm-K8TaDN4Z353b0HrHQTbmIitGzy-7CbtuyT50gR7m2a9D7aHMOFVb52JD9G9FrpoHh3jBfr4-tVVtV5s3l2-qVabhWYyI4u2oblueUs1baRpszynstY5oVlNauBStCDq3LCCS6MzozlAUTRFKXPIBYOCXaDns-4OOrWfV1AerFqvNurwRrgoKKPylib22czug78ZTRxUb6M2XQfO-DEqRhhLl-W8TOjTf9BrPwaXfpIoKcpS8DxL1HKmdPAxBtOeNqBEHUxVB1PVydTU8OQoO9a9aU74HxcTUM7AF9uZ6T9yqtpuq7_ivwCqQbLo</recordid><startdate>20240610</startdate><enddate>20240610</enddate><creator>Boulos, Joseph</creator><creator>Goc, Firat</creator><creator>Vandenbrouck, Tom</creator><creator>Perret, Noémie</creator><creator>Dhainaut, Jérémy</creator><creator>Royer, Sébastien</creator><creator>Rataboul, Franck</creator><general>Wiley Subscription Services, Inc</general><general>ChemPubSoc Europe/Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4299-5937</orcidid><orcidid>https://orcid.org/0000-0002-5635-0144</orcidid><orcidid>https://orcid.org/0000-0002-1035-0114</orcidid></search><sort><creationdate>20240610</creationdate><title>Carbon‐Supported Ru‐Ni and Ru‐W Catalysts for the Transformation of Hydroxyacetone and Saccharides into Glycol‐Derived Primary Amines</title><author>Boulos, Joseph ; Goc, Firat ; Vandenbrouck, Tom ; Perret, Noémie ; Dhainaut, Jérémy ; Royer, Sébastien ; Rataboul, Franck</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3620-fd17cf4f1c1d6ef27716bc7012b0ba465fa5b7e3846ec2ec4aa88d8967a753a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2-Aminopropanol</topic><topic>Agrochemicals</topic><topic>Aldehydes</topic><topic>Amines</topic><topic>Ammonia</topic><topic>Carbohydrates</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Cellulose</topic><topic>Chemical Sciences</topic><topic>Chemical synthesis</topic><topic>Heterogeneous catalysis</topic><topic>Reductive amination</topic><topic>Substrates</topic><topic>System effectiveness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boulos, Joseph</creatorcontrib><creatorcontrib>Goc, Firat</creatorcontrib><creatorcontrib>Vandenbrouck, Tom</creatorcontrib><creatorcontrib>Perret, Noémie</creatorcontrib><creatorcontrib>Dhainaut, Jérémy</creatorcontrib><creatorcontrib>Royer, Sébastien</creatorcontrib><creatorcontrib>Rataboul, Franck</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boulos, Joseph</au><au>Goc, Firat</au><au>Vandenbrouck, Tom</au><au>Perret, Noémie</au><au>Dhainaut, Jérémy</au><au>Royer, Sébastien</au><au>Rataboul, Franck</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon‐Supported Ru‐Ni and Ru‐W Catalysts for the Transformation of Hydroxyacetone and Saccharides into Glycol‐Derived Primary Amines</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2024-06-10</date><risdate>2024</risdate><volume>17</volume><issue>11</issue><spage>e202400540</spage><epage>n/a</epage><pages>e202400540-n/a</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Nitrogen‐containing molecules are used for the synthesis of polymers, surfactants, agrochemicals, and dyes. In the context of green chemistry, it is important to form such compounds from bioresource. Short‐chain primary amines are of interest for the polymer industry, like 2‐aminopropanol, 1‐aminopropan‐2‐ol, and 1,2‐diaminopropane. These amines can be formed through the amination of oxygenated substrates, preferably in aqueous phase. This is possible with heterogeneous catalysts, however, effective systems that allow reactions under mild conditions are lacking. We report an efficient catalyst Ru−Ni/AC for the reductive amination of hydroxyacetone into 2‐aminopropanol. The catalyst has been reused during 3 cycles demonstrating a good stability. As a prospective study, extension to the reactivity of (poly)carbohydrates has been realized. Despite a lesser efficiency, 2‐aminopropanol (9 % yield of amines) has been formed from fructose, the first example from a carbohydrate. This was possible using a 7.5 %Ru‐36 %WxC/AC catalyst, composition allowing a one‐pot retro‐aldol cleavage into hydroxyacetone and reductive amination. The transformation of cellulose through sequential reactions with a combination of 30 %W2C/AC and 7.5 %Ru‐36 %WxC/AC system gave 2 % of 2‐aminopropanol, corresponding to the first example of the formation of this amine from cellulose with heterogeneous catalysts. The efficiency and stability of a 4.5 %Ru‐4.5 %Ni/AC catalyst for the reductive amination of hydroxyacetone and biosourced substrates into primary amines is presented.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38572685</pmid><doi>10.1002/cssc.202400540</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4299-5937</orcidid><orcidid>https://orcid.org/0000-0002-5635-0144</orcidid><orcidid>https://orcid.org/0000-0002-1035-0114</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2024-06, Vol.17 (11), p.e202400540-n/a
issn 1864-5631
1864-564X
language eng
recordid cdi_hal_primary_oai_HAL_hal_04581316v1
source Wiley Online Library All Journals
subjects 2-Aminopropanol
Agrochemicals
Aldehydes
Amines
Ammonia
Carbohydrates
Catalysis
Catalysts
Cellulose
Chemical Sciences
Chemical synthesis
Heterogeneous catalysis
Reductive amination
Substrates
System effectiveness
title Carbon‐Supported Ru‐Ni and Ru‐W Catalysts for the Transformation of Hydroxyacetone and Saccharides into Glycol‐Derived Primary Amines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%E2%80%90Supported%20Ru%E2%80%90Ni%20and%20Ru%E2%80%90W%20Catalysts%20for%20the%20Transformation%20of%20Hydroxyacetone%20and%20Saccharides%20into%20Glycol%E2%80%90Derived%20Primary%20Amines&rft.jtitle=ChemSusChem&rft.au=Boulos,%20Joseph&rft.date=2024-06-10&rft.volume=17&rft.issue=11&rft.spage=e202400540&rft.epage=n/a&rft.pages=e202400540-n/a&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.202400540&rft_dat=%3Cproquest_hal_p%3E3033006449%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065995472&rft_id=info:pmid/38572685&rfr_iscdi=true