SPICE connection mosaics to link the Sun’s surface and the heliosphere

Aims. We present an analysis of the first connection mosaic made by the SPICE instrument on board the ESA/NASA Solar Orbiter mission on March 2, 2022. The data will be used to map coronal composition that will be compared with in-situ measurements taken by SWA/HIS to establish the coronal origin of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2024-05, Vol.685, p.A146
Hauptverfasser: Varesano, T., Hassler, D. M., Zambrana Prado, N., Plowman, J., Del Zanna, G., Parenti, S., Mason, H. E., Giunta, A., Auchère, F., Carlsson, M., Fludra, A., Peter, H., Müller, D., Williams, D., Aznar Cuadrado, R., Barczynski, K., Buchlin, E., Caldwell, M., Fredvik, T., Grundy, T., Guest, S., Harra, L., Janvier, M., Kucera, T., Leeks, S., Schmutz, W., Schuehle, U., Sidher, S., Teriaca, L., Thompson, W., Yardley, S. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A146
container_title Astronomy and astrophysics (Berlin)
container_volume 685
creator Varesano, T.
Hassler, D. M.
Zambrana Prado, N.
Plowman, J.
Del Zanna, G.
Parenti, S.
Mason, H. E.
Giunta, A.
Auchère, F.
Carlsson, M.
Fludra, A.
Peter, H.
Müller, D.
Williams, D.
Aznar Cuadrado, R.
Barczynski, K.
Buchlin, E.
Caldwell, M.
Fredvik, T.
Grundy, T.
Guest, S.
Harra, L.
Janvier, M.
Kucera, T.
Leeks, S.
Schmutz, W.
Schuehle, U.
Sidher, S.
Teriaca, L.
Thompson, W.
Yardley, S. L.
description Aims. We present an analysis of the first connection mosaic made by the SPICE instrument on board the ESA/NASA Solar Orbiter mission on March 2, 2022. The data will be used to map coronal composition that will be compared with in-situ measurements taken by SWA/HIS to establish the coronal origin of the solar wind plasma observed at Solar Orbiter. The SPICE spectral lines were chosen to have varying sensitivity to the first ionization potential (FIP) effect, and therefore the radiances of the spectral lines will vary significantly depending on whether the elemental composition is coronal or photospheric. We investigate the link between the behavior of sulfur and the hypothesis that Alfvén waves drive FIP fractionation above the chromosphere. Methods. We performed temperature diagnostics using line ratios and emission measure (EM) loci, and computed relative FIP biases using three different approaches (two-line ratio (2LR), ratios of linear combinations of spectral lines (LCR), and differential emission measure (DEM) inversion) in order to perform composition diagnostics in the corona. We then compared the SPICE composition analysis and EUI data of the potential solar wind source regions to the SWA/HIS data products. Results. Radiance maps were extracted from SPICE spectral data cubes, with values matching previous observations. We find isothermal plasma of around log T  = 5.8 for the AR loops targeted, and that higher FIP-bias values are present at the footpoints of the coronal loops associated with two ARs. Comparing the results with the SWA/HIS data products encourages us to think that Solar Orbiter was connected to a source of slow solar wind during this observation campaign. We demonstrate FIP fractionation in observations of the upper chromosphere and transition region, emphasized by the behavior of the intermediate-FIP element sulfur.
doi_str_mv 10.1051/0004-6361/202347637
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04579813v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3057071245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-2ce4939d8704d387c241a01cd22bc8021baa35d80fcfaae8a0f2fc64719db2233</originalsourceid><addsrcrecordid>eNo9kUFOwzAQRS0EEqVwAjaWWLEI9dhO7CyrqtBKlUAqrC3XcZSU1C52gsSOa3A9TkJCoavRjJ7-zPyP0DWQOyApTAghPMlYBhNKKOMiY-IEjYAzmhDBs1M0OhLn6CLGbd9SkGyEFuun5WyOjXfOmrb2Du981LWJuPW4qd0rbiuL1537_vyKOHah1MZi7YrfeWWb2sd9ZYO9RGelbqK9-qtj9HI_f54tktXjw3I2XSWGZtAm1Fies7yQgvCCSWEoB03AFJRujOyP2mjN0kKS0pRaW6lJSUuTcQF5saGUsTG6PehWulH7UO90-FBe12oxXalhRngqcgnsHXoWH1gT6tjWTjkftAIiU6oAgPUGjdHNAdkH_9bZ2Kqt74LrP1CMpIIIoDztKfYv5GMMtjxuBqKGBNTgrxr8VccE2A-jFHWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3057071245</pqid></control><display><type>article</type><title>SPICE connection mosaics to link the Sun’s surface and the heliosphere</title><source>EDP Sciences</source><source>NORA - Norwegian Open Research Archives</source><source>EZB Electronic Journals Library</source><source>EDP Sciences - Revues - Licences nationales - accès par la plateforme ISTEX</source><creator>Varesano, T. ; Hassler, D. M. ; Zambrana Prado, N. ; Plowman, J. ; Del Zanna, G. ; Parenti, S. ; Mason, H. E. ; Giunta, A. ; Auchère, F. ; Carlsson, M. ; Fludra, A. ; Peter, H. ; Müller, D. ; Williams, D. ; Aznar Cuadrado, R. ; Barczynski, K. ; Buchlin, E. ; Caldwell, M. ; Fredvik, T. ; Grundy, T. ; Guest, S. ; Harra, L. ; Janvier, M. ; Kucera, T. ; Leeks, S. ; Schmutz, W. ; Schuehle, U. ; Sidher, S. ; Teriaca, L. ; Thompson, W. ; Yardley, S. L.</creator><creatorcontrib>Varesano, T. ; Hassler, D. M. ; Zambrana Prado, N. ; Plowman, J. ; Del Zanna, G. ; Parenti, S. ; Mason, H. E. ; Giunta, A. ; Auchère, F. ; Carlsson, M. ; Fludra, A. ; Peter, H. ; Müller, D. ; Williams, D. ; Aznar Cuadrado, R. ; Barczynski, K. ; Buchlin, E. ; Caldwell, M. ; Fredvik, T. ; Grundy, T. ; Guest, S. ; Harra, L. ; Janvier, M. ; Kucera, T. ; Leeks, S. ; Schmutz, W. ; Schuehle, U. ; Sidher, S. ; Teriaca, L. ; Thompson, W. ; Yardley, S. L.</creatorcontrib><description>Aims. We present an analysis of the first connection mosaic made by the SPICE instrument on board the ESA/NASA Solar Orbiter mission on March 2, 2022. The data will be used to map coronal composition that will be compared with in-situ measurements taken by SWA/HIS to establish the coronal origin of the solar wind plasma observed at Solar Orbiter. The SPICE spectral lines were chosen to have varying sensitivity to the first ionization potential (FIP) effect, and therefore the radiances of the spectral lines will vary significantly depending on whether the elemental composition is coronal or photospheric. We investigate the link between the behavior of sulfur and the hypothesis that Alfvén waves drive FIP fractionation above the chromosphere. Methods. We performed temperature diagnostics using line ratios and emission measure (EM) loci, and computed relative FIP biases using three different approaches (two-line ratio (2LR), ratios of linear combinations of spectral lines (LCR), and differential emission measure (DEM) inversion) in order to perform composition diagnostics in the corona. We then compared the SPICE composition analysis and EUI data of the potential solar wind source regions to the SWA/HIS data products. Results. Radiance maps were extracted from SPICE spectral data cubes, with values matching previous observations. We find isothermal plasma of around log T  = 5.8 for the AR loops targeted, and that higher FIP-bias values are present at the footpoints of the coronal loops associated with two ARs. Comparing the results with the SWA/HIS data products encourages us to think that Solar Orbiter was connected to a source of slow solar wind during this observation campaign. We demonstrate FIP fractionation in observations of the upper chromosphere and transition region, emphasized by the behavior of the intermediate-FIP element sulfur.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/202347637</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Astrophysics ; Bias ; Chromosphere ; Composition ; Coronal loops ; Cubes ; Emission ; First ionization potential ; Fractionation ; Heliosphere ; In situ measurement ; Line spectra ; Magnetohydrodynamic waves ; Photosphere ; Physics ; Solar corona ; Solar Orbiter (ESA) ; Solar wind ; Sulfur</subject><ispartof>Astronomy and astrophysics (Berlin), 2024-05, Vol.685, p.A146</ispartof><rights>2024. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-2ce4939d8704d387c241a01cd22bc8021baa35d80fcfaae8a0f2fc64719db2233</cites><orcidid>0000-0001-9922-8117 ; 0000-0002-6966-5196 ; 0000-0001-7298-2320 ; 0000-0003-2802-4381 ; 0000-0001-9027-9954 ; 0000-0002-6418-7914 ; 0000-0002-6203-5239 ; 0000-0003-1294-1257 ; 0000-0001-9632-447X ; 0000-0003-1438-1310 ; 0000-0001-9457-6200 ; 0000-0002-6093-7861 ; 0009-0001-5240-5486 ; 0000-0002-4125-0204 ; 0000-0002-8673-3920 ; 0000-0003-0972-7022 ; 0000-0002-4693-1156 ; 0000-0001-6395-7115 ; 0000-0003-1159-5639 ; 0000-0002-6895-6426 ; 0000-0003-0256-9295 ; 0000-0001-7090-6180 ; 0000-0001-6060-9078 ; 0000-0003-4290-1897 ; 0000-0001-9218-3139</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3714,26544,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04579813$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Varesano, T.</creatorcontrib><creatorcontrib>Hassler, D. M.</creatorcontrib><creatorcontrib>Zambrana Prado, N.</creatorcontrib><creatorcontrib>Plowman, J.</creatorcontrib><creatorcontrib>Del Zanna, G.</creatorcontrib><creatorcontrib>Parenti, S.</creatorcontrib><creatorcontrib>Mason, H. E.</creatorcontrib><creatorcontrib>Giunta, A.</creatorcontrib><creatorcontrib>Auchère, F.</creatorcontrib><creatorcontrib>Carlsson, M.</creatorcontrib><creatorcontrib>Fludra, A.</creatorcontrib><creatorcontrib>Peter, H.</creatorcontrib><creatorcontrib>Müller, D.</creatorcontrib><creatorcontrib>Williams, D.</creatorcontrib><creatorcontrib>Aznar Cuadrado, R.</creatorcontrib><creatorcontrib>Barczynski, K.</creatorcontrib><creatorcontrib>Buchlin, E.</creatorcontrib><creatorcontrib>Caldwell, M.</creatorcontrib><creatorcontrib>Fredvik, T.</creatorcontrib><creatorcontrib>Grundy, T.</creatorcontrib><creatorcontrib>Guest, S.</creatorcontrib><creatorcontrib>Harra, L.</creatorcontrib><creatorcontrib>Janvier, M.</creatorcontrib><creatorcontrib>Kucera, T.</creatorcontrib><creatorcontrib>Leeks, S.</creatorcontrib><creatorcontrib>Schmutz, W.</creatorcontrib><creatorcontrib>Schuehle, U.</creatorcontrib><creatorcontrib>Sidher, S.</creatorcontrib><creatorcontrib>Teriaca, L.</creatorcontrib><creatorcontrib>Thompson, W.</creatorcontrib><creatorcontrib>Yardley, S. L.</creatorcontrib><title>SPICE connection mosaics to link the Sun’s surface and the heliosphere</title><title>Astronomy and astrophysics (Berlin)</title><description>Aims. We present an analysis of the first connection mosaic made by the SPICE instrument on board the ESA/NASA Solar Orbiter mission on March 2, 2022. The data will be used to map coronal composition that will be compared with in-situ measurements taken by SWA/HIS to establish the coronal origin of the solar wind plasma observed at Solar Orbiter. The SPICE spectral lines were chosen to have varying sensitivity to the first ionization potential (FIP) effect, and therefore the radiances of the spectral lines will vary significantly depending on whether the elemental composition is coronal or photospheric. We investigate the link between the behavior of sulfur and the hypothesis that Alfvén waves drive FIP fractionation above the chromosphere. Methods. We performed temperature diagnostics using line ratios and emission measure (EM) loci, and computed relative FIP biases using three different approaches (two-line ratio (2LR), ratios of linear combinations of spectral lines (LCR), and differential emission measure (DEM) inversion) in order to perform composition diagnostics in the corona. We then compared the SPICE composition analysis and EUI data of the potential solar wind source regions to the SWA/HIS data products. Results. Radiance maps were extracted from SPICE spectral data cubes, with values matching previous observations. We find isothermal plasma of around log T  = 5.8 for the AR loops targeted, and that higher FIP-bias values are present at the footpoints of the coronal loops associated with two ARs. Comparing the results with the SWA/HIS data products encourages us to think that Solar Orbiter was connected to a source of slow solar wind during this observation campaign. We demonstrate FIP fractionation in observations of the upper chromosphere and transition region, emphasized by the behavior of the intermediate-FIP element sulfur.</description><subject>Astrophysics</subject><subject>Bias</subject><subject>Chromosphere</subject><subject>Composition</subject><subject>Coronal loops</subject><subject>Cubes</subject><subject>Emission</subject><subject>First ionization potential</subject><subject>Fractionation</subject><subject>Heliosphere</subject><subject>In situ measurement</subject><subject>Line spectra</subject><subject>Magnetohydrodynamic waves</subject><subject>Photosphere</subject><subject>Physics</subject><subject>Solar corona</subject><subject>Solar Orbiter (ESA)</subject><subject>Solar wind</subject><subject>Sulfur</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNo9kUFOwzAQRS0EEqVwAjaWWLEI9dhO7CyrqtBKlUAqrC3XcZSU1C52gsSOa3A9TkJCoavRjJ7-zPyP0DWQOyApTAghPMlYBhNKKOMiY-IEjYAzmhDBs1M0OhLn6CLGbd9SkGyEFuun5WyOjXfOmrb2Du981LWJuPW4qd0rbiuL1537_vyKOHah1MZi7YrfeWWb2sd9ZYO9RGelbqK9-qtj9HI_f54tktXjw3I2XSWGZtAm1Fies7yQgvCCSWEoB03AFJRujOyP2mjN0kKS0pRaW6lJSUuTcQF5saGUsTG6PehWulH7UO90-FBe12oxXalhRngqcgnsHXoWH1gT6tjWTjkftAIiU6oAgPUGjdHNAdkH_9bZ2Kqt74LrP1CMpIIIoDztKfYv5GMMtjxuBqKGBNTgrxr8VccE2A-jFHWw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Varesano, T.</creator><creator>Hassler, D. M.</creator><creator>Zambrana Prado, N.</creator><creator>Plowman, J.</creator><creator>Del Zanna, G.</creator><creator>Parenti, S.</creator><creator>Mason, H. E.</creator><creator>Giunta, A.</creator><creator>Auchère, F.</creator><creator>Carlsson, M.</creator><creator>Fludra, A.</creator><creator>Peter, H.</creator><creator>Müller, D.</creator><creator>Williams, D.</creator><creator>Aznar Cuadrado, R.</creator><creator>Barczynski, K.</creator><creator>Buchlin, E.</creator><creator>Caldwell, M.</creator><creator>Fredvik, T.</creator><creator>Grundy, T.</creator><creator>Guest, S.</creator><creator>Harra, L.</creator><creator>Janvier, M.</creator><creator>Kucera, T.</creator><creator>Leeks, S.</creator><creator>Schmutz, W.</creator><creator>Schuehle, U.</creator><creator>Sidher, S.</creator><creator>Teriaca, L.</creator><creator>Thompson, W.</creator><creator>Yardley, S. L.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>3HK</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9922-8117</orcidid><orcidid>https://orcid.org/0000-0002-6966-5196</orcidid><orcidid>https://orcid.org/0000-0001-7298-2320</orcidid><orcidid>https://orcid.org/0000-0003-2802-4381</orcidid><orcidid>https://orcid.org/0000-0001-9027-9954</orcidid><orcidid>https://orcid.org/0000-0002-6418-7914</orcidid><orcidid>https://orcid.org/0000-0002-6203-5239</orcidid><orcidid>https://orcid.org/0000-0003-1294-1257</orcidid><orcidid>https://orcid.org/0000-0001-9632-447X</orcidid><orcidid>https://orcid.org/0000-0003-1438-1310</orcidid><orcidid>https://orcid.org/0000-0001-9457-6200</orcidid><orcidid>https://orcid.org/0000-0002-6093-7861</orcidid><orcidid>https://orcid.org/0009-0001-5240-5486</orcidid><orcidid>https://orcid.org/0000-0002-4125-0204</orcidid><orcidid>https://orcid.org/0000-0002-8673-3920</orcidid><orcidid>https://orcid.org/0000-0003-0972-7022</orcidid><orcidid>https://orcid.org/0000-0002-4693-1156</orcidid><orcidid>https://orcid.org/0000-0001-6395-7115</orcidid><orcidid>https://orcid.org/0000-0003-1159-5639</orcidid><orcidid>https://orcid.org/0000-0002-6895-6426</orcidid><orcidid>https://orcid.org/0000-0003-0256-9295</orcidid><orcidid>https://orcid.org/0000-0001-7090-6180</orcidid><orcidid>https://orcid.org/0000-0001-6060-9078</orcidid><orcidid>https://orcid.org/0000-0003-4290-1897</orcidid><orcidid>https://orcid.org/0000-0001-9218-3139</orcidid></search><sort><creationdate>20240501</creationdate><title>SPICE connection mosaics to link the Sun’s surface and the heliosphere</title><author>Varesano, T. ; Hassler, D. M. ; Zambrana Prado, N. ; Plowman, J. ; Del Zanna, G. ; Parenti, S. ; Mason, H. E. ; Giunta, A. ; Auchère, F. ; Carlsson, M. ; Fludra, A. ; Peter, H. ; Müller, D. ; Williams, D. ; Aznar Cuadrado, R. ; Barczynski, K. ; Buchlin, E. ; Caldwell, M. ; Fredvik, T. ; Grundy, T. ; Guest, S. ; Harra, L. ; Janvier, M. ; Kucera, T. ; Leeks, S. ; Schmutz, W. ; Schuehle, U. ; Sidher, S. ; Teriaca, L. ; Thompson, W. ; Yardley, S. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-2ce4939d8704d387c241a01cd22bc8021baa35d80fcfaae8a0f2fc64719db2233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astrophysics</topic><topic>Bias</topic><topic>Chromosphere</topic><topic>Composition</topic><topic>Coronal loops</topic><topic>Cubes</topic><topic>Emission</topic><topic>First ionization potential</topic><topic>Fractionation</topic><topic>Heliosphere</topic><topic>In situ measurement</topic><topic>Line spectra</topic><topic>Magnetohydrodynamic waves</topic><topic>Photosphere</topic><topic>Physics</topic><topic>Solar corona</topic><topic>Solar Orbiter (ESA)</topic><topic>Solar wind</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varesano, T.</creatorcontrib><creatorcontrib>Hassler, D. M.</creatorcontrib><creatorcontrib>Zambrana Prado, N.</creatorcontrib><creatorcontrib>Plowman, J.</creatorcontrib><creatorcontrib>Del Zanna, G.</creatorcontrib><creatorcontrib>Parenti, S.</creatorcontrib><creatorcontrib>Mason, H. E.</creatorcontrib><creatorcontrib>Giunta, A.</creatorcontrib><creatorcontrib>Auchère, F.</creatorcontrib><creatorcontrib>Carlsson, M.</creatorcontrib><creatorcontrib>Fludra, A.</creatorcontrib><creatorcontrib>Peter, H.</creatorcontrib><creatorcontrib>Müller, D.</creatorcontrib><creatorcontrib>Williams, D.</creatorcontrib><creatorcontrib>Aznar Cuadrado, R.</creatorcontrib><creatorcontrib>Barczynski, K.</creatorcontrib><creatorcontrib>Buchlin, E.</creatorcontrib><creatorcontrib>Caldwell, M.</creatorcontrib><creatorcontrib>Fredvik, T.</creatorcontrib><creatorcontrib>Grundy, T.</creatorcontrib><creatorcontrib>Guest, S.</creatorcontrib><creatorcontrib>Harra, L.</creatorcontrib><creatorcontrib>Janvier, M.</creatorcontrib><creatorcontrib>Kucera, T.</creatorcontrib><creatorcontrib>Leeks, S.</creatorcontrib><creatorcontrib>Schmutz, W.</creatorcontrib><creatorcontrib>Schuehle, U.</creatorcontrib><creatorcontrib>Sidher, S.</creatorcontrib><creatorcontrib>Teriaca, L.</creatorcontrib><creatorcontrib>Thompson, W.</creatorcontrib><creatorcontrib>Yardley, S. L.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varesano, T.</au><au>Hassler, D. M.</au><au>Zambrana Prado, N.</au><au>Plowman, J.</au><au>Del Zanna, G.</au><au>Parenti, S.</au><au>Mason, H. E.</au><au>Giunta, A.</au><au>Auchère, F.</au><au>Carlsson, M.</au><au>Fludra, A.</au><au>Peter, H.</au><au>Müller, D.</au><au>Williams, D.</au><au>Aznar Cuadrado, R.</au><au>Barczynski, K.</au><au>Buchlin, E.</au><au>Caldwell, M.</au><au>Fredvik, T.</au><au>Grundy, T.</au><au>Guest, S.</au><au>Harra, L.</au><au>Janvier, M.</au><au>Kucera, T.</au><au>Leeks, S.</au><au>Schmutz, W.</au><au>Schuehle, U.</au><au>Sidher, S.</au><au>Teriaca, L.</au><au>Thompson, W.</au><au>Yardley, S. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPICE connection mosaics to link the Sun’s surface and the heliosphere</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>685</volume><spage>A146</spage><pages>A146-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>Aims. We present an analysis of the first connection mosaic made by the SPICE instrument on board the ESA/NASA Solar Orbiter mission on March 2, 2022. The data will be used to map coronal composition that will be compared with in-situ measurements taken by SWA/HIS to establish the coronal origin of the solar wind plasma observed at Solar Orbiter. The SPICE spectral lines were chosen to have varying sensitivity to the first ionization potential (FIP) effect, and therefore the radiances of the spectral lines will vary significantly depending on whether the elemental composition is coronal or photospheric. We investigate the link between the behavior of sulfur and the hypothesis that Alfvén waves drive FIP fractionation above the chromosphere. Methods. We performed temperature diagnostics using line ratios and emission measure (EM) loci, and computed relative FIP biases using three different approaches (two-line ratio (2LR), ratios of linear combinations of spectral lines (LCR), and differential emission measure (DEM) inversion) in order to perform composition diagnostics in the corona. We then compared the SPICE composition analysis and EUI data of the potential solar wind source regions to the SWA/HIS data products. Results. Radiance maps were extracted from SPICE spectral data cubes, with values matching previous observations. We find isothermal plasma of around log T  = 5.8 for the AR loops targeted, and that higher FIP-bias values are present at the footpoints of the coronal loops associated with two ARs. Comparing the results with the SWA/HIS data products encourages us to think that Solar Orbiter was connected to a source of slow solar wind during this observation campaign. We demonstrate FIP fractionation in observations of the upper chromosphere and transition region, emphasized by the behavior of the intermediate-FIP element sulfur.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202347637</doi><orcidid>https://orcid.org/0000-0001-9922-8117</orcidid><orcidid>https://orcid.org/0000-0002-6966-5196</orcidid><orcidid>https://orcid.org/0000-0001-7298-2320</orcidid><orcidid>https://orcid.org/0000-0003-2802-4381</orcidid><orcidid>https://orcid.org/0000-0001-9027-9954</orcidid><orcidid>https://orcid.org/0000-0002-6418-7914</orcidid><orcidid>https://orcid.org/0000-0002-6203-5239</orcidid><orcidid>https://orcid.org/0000-0003-1294-1257</orcidid><orcidid>https://orcid.org/0000-0001-9632-447X</orcidid><orcidid>https://orcid.org/0000-0003-1438-1310</orcidid><orcidid>https://orcid.org/0000-0001-9457-6200</orcidid><orcidid>https://orcid.org/0000-0002-6093-7861</orcidid><orcidid>https://orcid.org/0009-0001-5240-5486</orcidid><orcidid>https://orcid.org/0000-0002-4125-0204</orcidid><orcidid>https://orcid.org/0000-0002-8673-3920</orcidid><orcidid>https://orcid.org/0000-0003-0972-7022</orcidid><orcidid>https://orcid.org/0000-0002-4693-1156</orcidid><orcidid>https://orcid.org/0000-0001-6395-7115</orcidid><orcidid>https://orcid.org/0000-0003-1159-5639</orcidid><orcidid>https://orcid.org/0000-0002-6895-6426</orcidid><orcidid>https://orcid.org/0000-0003-0256-9295</orcidid><orcidid>https://orcid.org/0000-0001-7090-6180</orcidid><orcidid>https://orcid.org/0000-0001-6060-9078</orcidid><orcidid>https://orcid.org/0000-0003-4290-1897</orcidid><orcidid>https://orcid.org/0000-0001-9218-3139</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2024-05, Vol.685, p.A146
issn 0004-6361
1432-0746
1432-0756
language eng
recordid cdi_hal_primary_oai_HAL_hal_04579813v1
source EDP Sciences; NORA - Norwegian Open Research Archives; EZB Electronic Journals Library; EDP Sciences - Revues - Licences nationales - accès par la plateforme ISTEX
subjects Astrophysics
Bias
Chromosphere
Composition
Coronal loops
Cubes
Emission
First ionization potential
Fractionation
Heliosphere
In situ measurement
Line spectra
Magnetohydrodynamic waves
Photosphere
Physics
Solar corona
Solar Orbiter (ESA)
Solar wind
Sulfur
title SPICE connection mosaics to link the Sun’s surface and the heliosphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPICE%20connection%20mosaics%20to%20link%20the%20Sun%E2%80%99s%20surface%20and%20the%20heliosphere&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Varesano,%20T.&rft.date=2024-05-01&rft.volume=685&rft.spage=A146&rft.pages=A146-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202347637&rft_dat=%3Cproquest_hal_p%3E3057071245%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3057071245&rft_id=info:pmid/&rfr_iscdi=true