Efficient tensor decomposition-based filter pruning

In this paper, we present CORING, which is short for effiCient tensOr decomposition-based filteR prunING, a novel filter pruning methodology for neural networks. CORING is crafted to achieve efficient tensor decomposition-based pruning, a stark departure from conventional approaches that rely on vec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2024-10, Vol.178, p.106393, Article 106393
Hauptverfasser: Pham, Van Tien, Zniyed, Yassine, Nguyen, Thanh Phuong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106393
container_title Neural networks
container_volume 178
creator Pham, Van Tien
Zniyed, Yassine
Nguyen, Thanh Phuong
description In this paper, we present CORING, which is short for effiCient tensOr decomposition-based filteR prunING, a novel filter pruning methodology for neural networks. CORING is crafted to achieve efficient tensor decomposition-based pruning, a stark departure from conventional approaches that rely on vectorized or matricized filter representations. Our approach represents a significant leap forward in the field by introducing tensor decompositions, specifically the HOSVD, which preserves the multidimensional nature of filters while providing a low-rank approximation, thus substantially reducing complexity. Furthermore, we introduce a versatile method for calculating filter similarity by using the low-rank approximation offered by the HOSVD. This obviates the need for using full filters or reshaped versions and enhances the overall efficiency and effectiveness of our approach. Extensive experimentation across diverse architectures and datasets spanning various vision tasks, including image classification, object detection, instance segmentation, and keypoint detection, validates CORING’s prowess. Remarkably, it outperforms state-of-the-art methods in reducing MACs and parameters, consistently enhancing validation accuracy. Furthermore, we supplement our quantitative results with a comprehensive ablation study, providing substantial evidence of the efficiency of our tensor-based approach. Beyond quantitative outcomes, qualitative results vividly illustrate CORING’s ability to retain essential features within pruned neural networks. Our code is available for research purposes.
doi_str_mv 10.1016/j.neunet.2024.106393
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04577465v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608024003174</els_id><sourcerecordid>3064581101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-91ca2d858543cf4a5f174b245d828f497b126a582b9ea29da1cae2f6169b41093</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMotlb_gUiXupiar8kkG6GUaoWCG12HTOZFU6aTmswU_PdOmdqlqweXc--Dg9AtwTOCiXjczBroGmhnFFPeR4IpdobGRBYqo4Wk52iMpWKZwBKP0FVKG4yxkJxdohGTkmGG8RixpXPeemjaaQtNCnFagQ3bXUi-9aHJSpOgmjpftxCnu9g1vvm8RhfO1AlujneCPp6X74tVtn57eV3M15lllLSZItbQSuYy58w6bnJHCl5SnleSSsdVURIqTC5pqcBQVZmeB-oEEarkBCs2QQ_D7pep9S76rYk_OhivV_O1PmSY50XBRb4nPXs_sLsYvjtIrd76ZKGuTQOhS5phwXNJenM9ygfUxpBSBHfaJlgf1OqNHtTqg1o9qO1rd8cPXbmF6lT6c9kDTwMAvZO9h6jTQayFykewra6C___DL_Neih0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064581101</pqid></control><display><type>article</type><title>Efficient tensor decomposition-based filter pruning</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Pham, Van Tien ; Zniyed, Yassine ; Nguyen, Thanh Phuong</creator><creatorcontrib>Pham, Van Tien ; Zniyed, Yassine ; Nguyen, Thanh Phuong</creatorcontrib><description>In this paper, we present CORING, which is short for effiCient tensOr decomposition-based filteR prunING, a novel filter pruning methodology for neural networks. CORING is crafted to achieve efficient tensor decomposition-based pruning, a stark departure from conventional approaches that rely on vectorized or matricized filter representations. Our approach represents a significant leap forward in the field by introducing tensor decompositions, specifically the HOSVD, which preserves the multidimensional nature of filters while providing a low-rank approximation, thus substantially reducing complexity. Furthermore, we introduce a versatile method for calculating filter similarity by using the low-rank approximation offered by the HOSVD. This obviates the need for using full filters or reshaped versions and enhances the overall efficiency and effectiveness of our approach. Extensive experimentation across diverse architectures and datasets spanning various vision tasks, including image classification, object detection, instance segmentation, and keypoint detection, validates CORING’s prowess. Remarkably, it outperforms state-of-the-art methods in reducing MACs and parameters, consistently enhancing validation accuracy. Furthermore, we supplement our quantitative results with a comprehensive ablation study, providing substantial evidence of the efficiency of our tensor-based approach. Beyond quantitative outcomes, qualitative results vividly illustrate CORING’s ability to retain essential features within pruned neural networks. Our code is available for research purposes.</description><identifier>ISSN: 0893-6080</identifier><identifier>ISSN: 1879-2782</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2024.106393</identifier><identifier>PMID: 38830300</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Artificial Intelligence ; Computer Science ; Filter pruning ; Humans ; Image Processing, Computer-Assisted - methods ; Network compression ; Neural Networks, Computer ; Signal and Image Processing ; Tensor decompositions</subject><ispartof>Neural networks, 2024-10, Vol.178, p.106393, Article 106393</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><rights>Public Domain</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c321t-91ca2d858543cf4a5f174b245d828f497b126a582b9ea29da1cae2f6169b41093</cites><orcidid>0000-0003-3890-7188 ; 0000-0002-6894-3449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2024.106393$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38830300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04577465$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pham, Van Tien</creatorcontrib><creatorcontrib>Zniyed, Yassine</creatorcontrib><creatorcontrib>Nguyen, Thanh Phuong</creatorcontrib><title>Efficient tensor decomposition-based filter pruning</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>In this paper, we present CORING, which is short for effiCient tensOr decomposition-based filteR prunING, a novel filter pruning methodology for neural networks. CORING is crafted to achieve efficient tensor decomposition-based pruning, a stark departure from conventional approaches that rely on vectorized or matricized filter representations. Our approach represents a significant leap forward in the field by introducing tensor decompositions, specifically the HOSVD, which preserves the multidimensional nature of filters while providing a low-rank approximation, thus substantially reducing complexity. Furthermore, we introduce a versatile method for calculating filter similarity by using the low-rank approximation offered by the HOSVD. This obviates the need for using full filters or reshaped versions and enhances the overall efficiency and effectiveness of our approach. Extensive experimentation across diverse architectures and datasets spanning various vision tasks, including image classification, object detection, instance segmentation, and keypoint detection, validates CORING’s prowess. Remarkably, it outperforms state-of-the-art methods in reducing MACs and parameters, consistently enhancing validation accuracy. Furthermore, we supplement our quantitative results with a comprehensive ablation study, providing substantial evidence of the efficiency of our tensor-based approach. Beyond quantitative outcomes, qualitative results vividly illustrate CORING’s ability to retain essential features within pruned neural networks. Our code is available for research purposes.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Filter pruning</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Network compression</subject><subject>Neural Networks, Computer</subject><subject>Signal and Image Processing</subject><subject>Tensor decompositions</subject><issn>0893-6080</issn><issn>1879-2782</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEURYMotlb_gUiXupiar8kkG6GUaoWCG12HTOZFU6aTmswU_PdOmdqlqweXc--Dg9AtwTOCiXjczBroGmhnFFPeR4IpdobGRBYqo4Wk52iMpWKZwBKP0FVKG4yxkJxdohGTkmGG8RixpXPeemjaaQtNCnFagQ3bXUi-9aHJSpOgmjpftxCnu9g1vvm8RhfO1AlujneCPp6X74tVtn57eV3M15lllLSZItbQSuYy58w6bnJHCl5SnleSSsdVURIqTC5pqcBQVZmeB-oEEarkBCs2QQ_D7pep9S76rYk_OhivV_O1PmSY50XBRb4nPXs_sLsYvjtIrd76ZKGuTQOhS5phwXNJenM9ygfUxpBSBHfaJlgf1OqNHtTqg1o9qO1rd8cPXbmF6lT6c9kDTwMAvZO9h6jTQayFykewra6C___DL_Neih0</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Pham, Van Tien</creator><creator>Zniyed, Yassine</creator><creator>Nguyen, Thanh Phuong</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3890-7188</orcidid><orcidid>https://orcid.org/0000-0002-6894-3449</orcidid></search><sort><creationdate>20241001</creationdate><title>Efficient tensor decomposition-based filter pruning</title><author>Pham, Van Tien ; Zniyed, Yassine ; Nguyen, Thanh Phuong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-91ca2d858543cf4a5f174b245d828f497b126a582b9ea29da1cae2f6169b41093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Filter pruning</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Network compression</topic><topic>Neural Networks, Computer</topic><topic>Signal and Image Processing</topic><topic>Tensor decompositions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Van Tien</creatorcontrib><creatorcontrib>Zniyed, Yassine</creatorcontrib><creatorcontrib>Nguyen, Thanh Phuong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Van Tien</au><au>Zniyed, Yassine</au><au>Nguyen, Thanh Phuong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient tensor decomposition-based filter pruning</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>178</volume><spage>106393</spage><pages>106393-</pages><artnum>106393</artnum><issn>0893-6080</issn><issn>1879-2782</issn><eissn>1879-2782</eissn><abstract>In this paper, we present CORING, which is short for effiCient tensOr decomposition-based filteR prunING, a novel filter pruning methodology for neural networks. CORING is crafted to achieve efficient tensor decomposition-based pruning, a stark departure from conventional approaches that rely on vectorized or matricized filter representations. Our approach represents a significant leap forward in the field by introducing tensor decompositions, specifically the HOSVD, which preserves the multidimensional nature of filters while providing a low-rank approximation, thus substantially reducing complexity. Furthermore, we introduce a versatile method for calculating filter similarity by using the low-rank approximation offered by the HOSVD. This obviates the need for using full filters or reshaped versions and enhances the overall efficiency and effectiveness of our approach. Extensive experimentation across diverse architectures and datasets spanning various vision tasks, including image classification, object detection, instance segmentation, and keypoint detection, validates CORING’s prowess. Remarkably, it outperforms state-of-the-art methods in reducing MACs and parameters, consistently enhancing validation accuracy. Furthermore, we supplement our quantitative results with a comprehensive ablation study, providing substantial evidence of the efficiency of our tensor-based approach. Beyond quantitative outcomes, qualitative results vividly illustrate CORING’s ability to retain essential features within pruned neural networks. Our code is available for research purposes.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38830300</pmid><doi>10.1016/j.neunet.2024.106393</doi><orcidid>https://orcid.org/0000-0003-3890-7188</orcidid><orcidid>https://orcid.org/0000-0002-6894-3449</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2024-10, Vol.178, p.106393, Article 106393
issn 0893-6080
1879-2782
1879-2782
language eng
recordid cdi_hal_primary_oai_HAL_hal_04577465v1
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Artificial Intelligence
Computer Science
Filter pruning
Humans
Image Processing, Computer-Assisted - methods
Network compression
Neural Networks, Computer
Signal and Image Processing
Tensor decompositions
title Efficient tensor decomposition-based filter pruning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A01%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20tensor%20decomposition-based%20filter%20pruning&rft.jtitle=Neural%20networks&rft.au=Pham,%20Van%20Tien&rft.date=2024-10-01&rft.volume=178&rft.spage=106393&rft.pages=106393-&rft.artnum=106393&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2024.106393&rft_dat=%3Cproquest_hal_p%3E3064581101%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064581101&rft_id=info:pmid/38830300&rft_els_id=S0893608024003174&rfr_iscdi=true