PhysOM: Physarum polycephalum Oriented Microstructures
Biological shapes possess fascinating properties and behaviours that are the result of emergent mechanisms: they can evolve over time, dynamically adapt to changes in their environment, while also exhibiting interesting mechanical properties and aesthetic appeal. In this work, we bring and extend an...
Gespeichert in:
Veröffentlicht in: | Computer graphics forum 2024-09, Vol.43 (6), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Computer graphics forum |
container_volume | 43 |
creator | Garnier, David‐Henri Schmidt, M. P. Rohmer, Damien |
description | Biological shapes possess fascinating properties and behaviours that are the result of emergent mechanisms: they can evolve over time, dynamically adapt to changes in their environment, while also exhibiting interesting mechanical properties and aesthetic appeal. In this work, we bring and extend an existing biological‐inspired model of the Physarum polycephalum, aka the blob, to the field of computer graphics, in order to design porous organic‐like microstructures that resemble natural foam‐like cells or filament‐like patterns with variable local properties. In contrast to approaches based on static global optimization that provides only limited expressivity over the result, our method allows precise control over the local orientation of 3D patterns, relative cell extension and precise infill of shapes with well defined boundaries. To this end, we extend the classical agent‐based model for Physarum to fill an arbitrary domain with local anisotropic behaviour. We further provide a detailed analysis of the model parameters, contributing to the understanding of the system behaviour. The method is fast, parallelizable and scalable to large volumes and compatible with user interaction, allowing a designer to guide the structure, erase parts and observe its evolution in real‐time. Overall, our method provides a versatile and efficient means of generating intricate organic microstructures that have potential applications in fields such as additive manufacturing, design or biological representation and engineering.
This work extends a biological‐inspired model to computer graphics, enabling the design of porous organic‐like microstructures with precise local control over 3D patterns. The method offers scalability, user interaction and potential applications in additive manufacturing, design and biological engineering, providing efficient generation of intricate structures. |
doi_str_mv | 10.1111/cgf.15075 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04572077v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108774063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3265-c72a9167d1e05dfa43a5381741dbfb82dc391b516d952ca13198405302bcab2f3</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EEqUw8A0qMTGkPf9P2KqKtkitygCz5TgOTZU2wU5A-fY4BMHELXe2fn73_BC6xTDFoWbmLZ9iDpKfoRFmQkax4Mk5GgEOswTOL9GV9wcAYFLwERLP-87vtg-TvmvXHid1VXbG1ntdhsPOFfbU2GyyLYyrfONa07TO-mt0kevS25ufPkavy8eXxTra7FZPi_kmMpQIHhlJdBI2Z9gCz3LNqOY0xpLhLM3TmGSGJjjlWGQJJ0ZjipOYAadAUqNTktMxuh90gx1Vu-KoXacqXaj1fKP6O2BcEpDygwT2bmBrV7231jfqULXuFOwpiiGWkoGgf4r9f7yz-a8sBtVHqEKE6jvCwM4G9rMobfc_qBar5fDiC1NncFc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108774063</pqid></control><display><type>article</type><title>PhysOM: Physarum polycephalum Oriented Microstructures</title><source>Wiley Online Library All Journals</source><creator>Garnier, David‐Henri ; Schmidt, M. P. ; Rohmer, Damien</creator><creatorcontrib>Garnier, David‐Henri ; Schmidt, M. P. ; Rohmer, Damien</creatorcontrib><description>Biological shapes possess fascinating properties and behaviours that are the result of emergent mechanisms: they can evolve over time, dynamically adapt to changes in their environment, while also exhibiting interesting mechanical properties and aesthetic appeal. In this work, we bring and extend an existing biological‐inspired model of the Physarum polycephalum, aka the blob, to the field of computer graphics, in order to design porous organic‐like microstructures that resemble natural foam‐like cells or filament‐like patterns with variable local properties. In contrast to approaches based on static global optimization that provides only limited expressivity over the result, our method allows precise control over the local orientation of 3D patterns, relative cell extension and precise infill of shapes with well defined boundaries. To this end, we extend the classical agent‐based model for Physarum to fill an arbitrary domain with local anisotropic behaviour. We further provide a detailed analysis of the model parameters, contributing to the understanding of the system behaviour. The method is fast, parallelizable and scalable to large volumes and compatible with user interaction, allowing a designer to guide the structure, erase parts and observe its evolution in real‐time. Overall, our method provides a versatile and efficient means of generating intricate organic microstructures that have potential applications in fields such as additive manufacturing, design or biological representation and engineering.
This work extends a biological‐inspired model to computer graphics, enabling the design of porous organic‐like microstructures with precise local control over 3D patterns. The method offers scalability, user interaction and potential applications in additive manufacturing, design and biological engineering, providing efficient generation of intricate structures.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.15075</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Agent-based models ; Bioinformatics ; Biological effects ; Biological properties ; Computer graphics ; Computer Science ; Design ; Global optimization ; Graphics ; Mechanical properties ; Microstructure ; Modeling and Simulation ; modelling ; modelling; geometric modelling ; modelling; mesh generation</subject><ispartof>Computer graphics forum, 2024-09, Vol.43 (6), p.n/a</ispartof><rights>2024 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3265-c72a9167d1e05dfa43a5381741dbfb82dc391b516d952ca13198405302bcab2f3</cites><orcidid>0000-0002-3302-5197 ; 0000-0003-0883-1776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.15075$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.15075$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04572077$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Garnier, David‐Henri</creatorcontrib><creatorcontrib>Schmidt, M. P.</creatorcontrib><creatorcontrib>Rohmer, Damien</creatorcontrib><title>PhysOM: Physarum polycephalum Oriented Microstructures</title><title>Computer graphics forum</title><description>Biological shapes possess fascinating properties and behaviours that are the result of emergent mechanisms: they can evolve over time, dynamically adapt to changes in their environment, while also exhibiting interesting mechanical properties and aesthetic appeal. In this work, we bring and extend an existing biological‐inspired model of the Physarum polycephalum, aka the blob, to the field of computer graphics, in order to design porous organic‐like microstructures that resemble natural foam‐like cells or filament‐like patterns with variable local properties. In contrast to approaches based on static global optimization that provides only limited expressivity over the result, our method allows precise control over the local orientation of 3D patterns, relative cell extension and precise infill of shapes with well defined boundaries. To this end, we extend the classical agent‐based model for Physarum to fill an arbitrary domain with local anisotropic behaviour. We further provide a detailed analysis of the model parameters, contributing to the understanding of the system behaviour. The method is fast, parallelizable and scalable to large volumes and compatible with user interaction, allowing a designer to guide the structure, erase parts and observe its evolution in real‐time. Overall, our method provides a versatile and efficient means of generating intricate organic microstructures that have potential applications in fields such as additive manufacturing, design or biological representation and engineering.
This work extends a biological‐inspired model to computer graphics, enabling the design of porous organic‐like microstructures with precise local control over 3D patterns. The method offers scalability, user interaction and potential applications in additive manufacturing, design and biological engineering, providing efficient generation of intricate structures.</description><subject>Agent-based models</subject><subject>Bioinformatics</subject><subject>Biological effects</subject><subject>Biological properties</subject><subject>Computer graphics</subject><subject>Computer Science</subject><subject>Design</subject><subject>Global optimization</subject><subject>Graphics</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Modeling and Simulation</subject><subject>modelling</subject><subject>modelling; geometric modelling</subject><subject>modelling; mesh generation</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kD9PwzAQxS0EEqUw8A0qMTGkPf9P2KqKtkitygCz5TgOTZU2wU5A-fY4BMHELXe2fn73_BC6xTDFoWbmLZ9iDpKfoRFmQkax4Mk5GgEOswTOL9GV9wcAYFLwERLP-87vtg-TvmvXHid1VXbG1ntdhsPOFfbU2GyyLYyrfONa07TO-mt0kevS25ufPkavy8eXxTra7FZPi_kmMpQIHhlJdBI2Z9gCz3LNqOY0xpLhLM3TmGSGJjjlWGQJJ0ZjipOYAadAUqNTktMxuh90gx1Vu-KoXacqXaj1fKP6O2BcEpDygwT2bmBrV7231jfqULXuFOwpiiGWkoGgf4r9f7yz-a8sBtVHqEKE6jvCwM4G9rMobfc_qBar5fDiC1NncFc</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Garnier, David‐Henri</creator><creator>Schmidt, M. P.</creator><creator>Rohmer, Damien</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3302-5197</orcidid><orcidid>https://orcid.org/0000-0003-0883-1776</orcidid></search><sort><creationdate>202409</creationdate><title>PhysOM: Physarum polycephalum Oriented Microstructures</title><author>Garnier, David‐Henri ; Schmidt, M. P. ; Rohmer, Damien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3265-c72a9167d1e05dfa43a5381741dbfb82dc391b516d952ca13198405302bcab2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agent-based models</topic><topic>Bioinformatics</topic><topic>Biological effects</topic><topic>Biological properties</topic><topic>Computer graphics</topic><topic>Computer Science</topic><topic>Design</topic><topic>Global optimization</topic><topic>Graphics</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Modeling and Simulation</topic><topic>modelling</topic><topic>modelling; geometric modelling</topic><topic>modelling; mesh generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garnier, David‐Henri</creatorcontrib><creatorcontrib>Schmidt, M. P.</creatorcontrib><creatorcontrib>Rohmer, Damien</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garnier, David‐Henri</au><au>Schmidt, M. P.</au><au>Rohmer, Damien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PhysOM: Physarum polycephalum Oriented Microstructures</atitle><jtitle>Computer graphics forum</jtitle><date>2024-09</date><risdate>2024</risdate><volume>43</volume><issue>6</issue><epage>n/a</epage><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>Biological shapes possess fascinating properties and behaviours that are the result of emergent mechanisms: they can evolve over time, dynamically adapt to changes in their environment, while also exhibiting interesting mechanical properties and aesthetic appeal. In this work, we bring and extend an existing biological‐inspired model of the Physarum polycephalum, aka the blob, to the field of computer graphics, in order to design porous organic‐like microstructures that resemble natural foam‐like cells or filament‐like patterns with variable local properties. In contrast to approaches based on static global optimization that provides only limited expressivity over the result, our method allows precise control over the local orientation of 3D patterns, relative cell extension and precise infill of shapes with well defined boundaries. To this end, we extend the classical agent‐based model for Physarum to fill an arbitrary domain with local anisotropic behaviour. We further provide a detailed analysis of the model parameters, contributing to the understanding of the system behaviour. The method is fast, parallelizable and scalable to large volumes and compatible with user interaction, allowing a designer to guide the structure, erase parts and observe its evolution in real‐time. Overall, our method provides a versatile and efficient means of generating intricate organic microstructures that have potential applications in fields such as additive manufacturing, design or biological representation and engineering.
This work extends a biological‐inspired model to computer graphics, enabling the design of porous organic‐like microstructures with precise local control over 3D patterns. The method offers scalability, user interaction and potential applications in additive manufacturing, design and biological engineering, providing efficient generation of intricate structures.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.15075</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-3302-5197</orcidid><orcidid>https://orcid.org/0000-0003-0883-1776</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7055 |
ispartof | Computer graphics forum, 2024-09, Vol.43 (6), p.n/a |
issn | 0167-7055 1467-8659 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04572077v2 |
source | Wiley Online Library All Journals |
subjects | Agent-based models Bioinformatics Biological effects Biological properties Computer graphics Computer Science Design Global optimization Graphics Mechanical properties Microstructure Modeling and Simulation modelling modelling geometric modelling modelling mesh generation |
title | PhysOM: Physarum polycephalum Oriented Microstructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A26%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PhysOM:%20Physarum%20polycephalum%20Oriented%20Microstructures&rft.jtitle=Computer%20graphics%20forum&rft.au=Garnier,%20David%E2%80%90Henri&rft.date=2024-09&rft.volume=43&rft.issue=6&rft.epage=n/a&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.15075&rft_dat=%3Cproquest_hal_p%3E3108774063%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108774063&rft_id=info:pmid/&rfr_iscdi=true |