Euclidean preferences in the plane under $\ell_1$, $\ell_2$ and $\ell_\infty$ norms

We present various results about Euclidean preferences in the plane under $\ell_1$, $\ell_2$ and $\ell_{\infty}$ norms. When there are four candidates, we show that the maximal size (in terms of the number of pairwise distinct preferences) of Euclidean preference profiles in the plane under norm $\e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Social choice and welfare 2024-05
Hauptverfasser: Escoffier, Bruno, Spanjaard, Olivier, Tydrichová, Magdaléna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Social choice and welfare
container_volume
creator Escoffier, Bruno
Spanjaard, Olivier
Tydrichová, Magdaléna
description We present various results about Euclidean preferences in the plane under $\ell_1$, $\ell_2$ and $\ell_{\infty}$ norms. When there are four candidates, we show that the maximal size (in terms of the number of pairwise distinct preferences) of Euclidean preference profiles in the plane under norm $\ell_1$ or $\ell_{\infty}$ is 19. Whatever the number of candidates, we prove that at most four distinct candidates can be ranked in last position of a two-dimensional Euclidean preference profile under norm $\ell_1$ or $\ell_\infty$, which generalizes the case of one-dimensional Euclidean preferences (for which it is well known that at most two candidates can be ranked last). We generalize this result to $2^d$ (resp. $2d$) for $\ell_1$ (resp. $\ell_\infty$) for $d$-dimensional Euclidean preferences. We also establish that the maximal size of a two-dimensional Euclidean preference profile on $m$ candidates under norm $\ell_1$ is in $Θ(m^4)$, i.e., the same order of magnitude as under norm $\ell_2$. Finally, we provide a new proof that two-dimensional Euclidean preference profiles under norm $\ell_2$ for four candidates can be characterized by three voter-maximal two-dimensional Euclidean profiles. This proof is a simpler alternative to that proposed by Kamiya et al. in Ranking patterns of unfolding models of codimension one, Advances in Applied Mathematics 47(2):379-400.
doi_str_mv 10.1007/s00355-024-01525-2
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04561794v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04561794v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_04561794v13</originalsourceid><addsrcrecordid>eNqVirGKAjEURYO44Kj7A1ulmEYw-l4mMW4pi2Jhp4WFEILzBrPEOCQq-PfLwvyA1T3ncBn7QpghgJlngEprAVIJQC21kD1WoKqkkGiOfVYAmoVAg2rAhjn_AoCUalmw_fpxDr4mF3mbqKFE8UyZ-8jvF-JtcJH4I9aUeHmiECyW045kyV2sOzn52NxfJY-3dM1j9tG4kOmz2xGbbNaHn624uGDb5K8uvezNebtd7ex_A6UXaL7VE6t3vn90kkiW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Euclidean preferences in the plane under $\ell_1$, $\ell_2$ and $\ell_\infty$ norms</title><source>SpringerLink Journals - AutoHoldings</source><creator>Escoffier, Bruno ; Spanjaard, Olivier ; Tydrichová, Magdaléna</creator><creatorcontrib>Escoffier, Bruno ; Spanjaard, Olivier ; Tydrichová, Magdaléna</creatorcontrib><description>We present various results about Euclidean preferences in the plane under $\ell_1$, $\ell_2$ and $\ell_{\infty}$ norms. When there are four candidates, we show that the maximal size (in terms of the number of pairwise distinct preferences) of Euclidean preference profiles in the plane under norm $\ell_1$ or $\ell_{\infty}$ is 19. Whatever the number of candidates, we prove that at most four distinct candidates can be ranked in last position of a two-dimensional Euclidean preference profile under norm $\ell_1$ or $\ell_\infty$, which generalizes the case of one-dimensional Euclidean preferences (for which it is well known that at most two candidates can be ranked last). We generalize this result to $2^d$ (resp. $2d$) for $\ell_1$ (resp. $\ell_\infty$) for $d$-dimensional Euclidean preferences. We also establish that the maximal size of a two-dimensional Euclidean preference profile on $m$ candidates under norm $\ell_1$ is in $Θ(m^4)$, i.e., the same order of magnitude as under norm $\ell_2$. Finally, we provide a new proof that two-dimensional Euclidean preference profiles under norm $\ell_2$ for four candidates can be characterized by three voter-maximal two-dimensional Euclidean profiles. This proof is a simpler alternative to that proposed by Kamiya et al. in Ranking patterns of unfolding models of codimension one, Advances in Applied Mathematics 47(2):379-400.</description><identifier>ISSN: 0176-1714</identifier><identifier>EISSN: 1432-217X</identifier><identifier>DOI: 10.1007/s00355-024-01525-2</identifier><language>eng</language><publisher>Springer Verlag</publisher><subject>Computer Science ; Discrete Mathematics</subject><ispartof>Social choice and welfare, 2024-05</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9948-090X ; 0000-0002-6477-8706 ; 0000-0002-9948-090X ; 0000-0002-6477-8706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04561794$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Escoffier, Bruno</creatorcontrib><creatorcontrib>Spanjaard, Olivier</creatorcontrib><creatorcontrib>Tydrichová, Magdaléna</creatorcontrib><title>Euclidean preferences in the plane under $\ell_1$, $\ell_2$ and $\ell_\infty$ norms</title><title>Social choice and welfare</title><description>We present various results about Euclidean preferences in the plane under $\ell_1$, $\ell_2$ and $\ell_{\infty}$ norms. When there are four candidates, we show that the maximal size (in terms of the number of pairwise distinct preferences) of Euclidean preference profiles in the plane under norm $\ell_1$ or $\ell_{\infty}$ is 19. Whatever the number of candidates, we prove that at most four distinct candidates can be ranked in last position of a two-dimensional Euclidean preference profile under norm $\ell_1$ or $\ell_\infty$, which generalizes the case of one-dimensional Euclidean preferences (for which it is well known that at most two candidates can be ranked last). We generalize this result to $2^d$ (resp. $2d$) for $\ell_1$ (resp. $\ell_\infty$) for $d$-dimensional Euclidean preferences. We also establish that the maximal size of a two-dimensional Euclidean preference profile on $m$ candidates under norm $\ell_1$ is in $Θ(m^4)$, i.e., the same order of magnitude as under norm $\ell_2$. Finally, we provide a new proof that two-dimensional Euclidean preference profiles under norm $\ell_2$ for four candidates can be characterized by three voter-maximal two-dimensional Euclidean profiles. This proof is a simpler alternative to that proposed by Kamiya et al. in Ranking patterns of unfolding models of codimension one, Advances in Applied Mathematics 47(2):379-400.</description><subject>Computer Science</subject><subject>Discrete Mathematics</subject><issn>0176-1714</issn><issn>1432-217X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVirGKAjEURYO44Kj7A1ulmEYw-l4mMW4pi2Jhp4WFEILzBrPEOCQq-PfLwvyA1T3ncBn7QpghgJlngEprAVIJQC21kD1WoKqkkGiOfVYAmoVAg2rAhjn_AoCUalmw_fpxDr4mF3mbqKFE8UyZ-8jvF-JtcJH4I9aUeHmiECyW045kyV2sOzn52NxfJY-3dM1j9tG4kOmz2xGbbNaHn624uGDb5K8uvezNebtd7ex_A6UXaL7VE6t3vn90kkiW</recordid><startdate>20240503</startdate><enddate>20240503</enddate><creator>Escoffier, Bruno</creator><creator>Spanjaard, Olivier</creator><creator>Tydrichová, Magdaléna</creator><general>Springer Verlag</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9948-090X</orcidid><orcidid>https://orcid.org/0000-0002-6477-8706</orcidid><orcidid>https://orcid.org/0000-0002-9948-090X</orcidid><orcidid>https://orcid.org/0000-0002-6477-8706</orcidid></search><sort><creationdate>20240503</creationdate><title>Euclidean preferences in the plane under $\ell_1$, $\ell_2$ and $\ell_\infty$ norms</title><author>Escoffier, Bruno ; Spanjaard, Olivier ; Tydrichová, Magdaléna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_04561794v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computer Science</topic><topic>Discrete Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Escoffier, Bruno</creatorcontrib><creatorcontrib>Spanjaard, Olivier</creatorcontrib><creatorcontrib>Tydrichová, Magdaléna</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Social choice and welfare</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Escoffier, Bruno</au><au>Spanjaard, Olivier</au><au>Tydrichová, Magdaléna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Euclidean preferences in the plane under $\ell_1$, $\ell_2$ and $\ell_\infty$ norms</atitle><jtitle>Social choice and welfare</jtitle><date>2024-05-03</date><risdate>2024</risdate><issn>0176-1714</issn><eissn>1432-217X</eissn><abstract>We present various results about Euclidean preferences in the plane under $\ell_1$, $\ell_2$ and $\ell_{\infty}$ norms. When there are four candidates, we show that the maximal size (in terms of the number of pairwise distinct preferences) of Euclidean preference profiles in the plane under norm $\ell_1$ or $\ell_{\infty}$ is 19. Whatever the number of candidates, we prove that at most four distinct candidates can be ranked in last position of a two-dimensional Euclidean preference profile under norm $\ell_1$ or $\ell_\infty$, which generalizes the case of one-dimensional Euclidean preferences (for which it is well known that at most two candidates can be ranked last). We generalize this result to $2^d$ (resp. $2d$) for $\ell_1$ (resp. $\ell_\infty$) for $d$-dimensional Euclidean preferences. We also establish that the maximal size of a two-dimensional Euclidean preference profile on $m$ candidates under norm $\ell_1$ is in $Θ(m^4)$, i.e., the same order of magnitude as under norm $\ell_2$. Finally, we provide a new proof that two-dimensional Euclidean preference profiles under norm $\ell_2$ for four candidates can be characterized by three voter-maximal two-dimensional Euclidean profiles. This proof is a simpler alternative to that proposed by Kamiya et al. in Ranking patterns of unfolding models of codimension one, Advances in Applied Mathematics 47(2):379-400.</abstract><pub>Springer Verlag</pub><doi>10.1007/s00355-024-01525-2</doi><orcidid>https://orcid.org/0000-0002-9948-090X</orcidid><orcidid>https://orcid.org/0000-0002-6477-8706</orcidid><orcidid>https://orcid.org/0000-0002-9948-090X</orcidid><orcidid>https://orcid.org/0000-0002-6477-8706</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0176-1714
ispartof Social choice and welfare, 2024-05
issn 0176-1714
1432-217X
language eng
recordid cdi_hal_primary_oai_HAL_hal_04561794v1
source SpringerLink Journals - AutoHoldings
subjects Computer Science
Discrete Mathematics
title Euclidean preferences in the plane under $\ell_1$, $\ell_2$ and $\ell_\infty$ norms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A41%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Euclidean%20preferences%20in%20the%20plane%20under%20$%5Cell_1$,%20$%5Cell_2$%20and%20$%5Cell_%5Cinfty$%20norms&rft.jtitle=Social%20choice%20and%20welfare&rft.au=Escoffier,%20Bruno&rft.date=2024-05-03&rft.issn=0176-1714&rft.eissn=1432-217X&rft_id=info:doi/10.1007/s00355-024-01525-2&rft_dat=%3Chal%3Eoai_HAL_hal_04561794v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true