Discretization of prescribed-time observers in the presence of noises and perturbations
An implicit Euler discretization scheme of the prescribed-time converging observer from Holloway and Krstic, (2019) is proposed, which preserves all main properties of the continuous-time counterpart, and it is investigated how to apply recursively this discretization on any interval of time. In add...
Gespeichert in:
Veröffentlicht in: | Systems & control letters 2024-06, Vol.188, p.105820, Article 105820 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 105820 |
container_title | Systems & control letters |
container_volume | 188 |
creator | Efimov, Denis Orlov, Yury |
description | An implicit Euler discretization scheme of the prescribed-time converging observer from Holloway and Krstic, (2019) is proposed, which preserves all main properties of the continuous-time counterpart, and it is investigated how to apply recursively this discretization on any interval of time. In addition, it is demonstrated that the estimation error is robustly stable with respect to the measurement noise with a linear gain (the property that does not hold in the continuous-time setting). The efficiency of the suggested discrete-time observer is illustrated through numeric experiments. |
doi_str_mv | 10.1016/j.sysconle.2024.105820 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04561768v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167691124001087</els_id><sourcerecordid>S0167691124001087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-f144e683f1915abe1cff92c31c68b74b7b75b917b82eb0cbce9b0f6d79c99cc83</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKt_QWbrYmruPJLJzlKfUHCjuAyTOzc0pZ2UZCzUX-9MR926unD4zoH7MXYNfAYcxO16Fg8RfbuhWcazog_LKuMnbAKVzFKpSnHKJj0oU6EAztlFjGvOecbzfMI-7l3EQJ37qjvn28TbZBeoj5yhJu3clhJvIoU9hZi4NulWdASoRRrg1rtIManbJtlR6D6DOe7ES3Zm602kq587Ze-PD2-L53T5-vSymC9TzAvRpRaKgkSVW1BQ1oYArVUZ5oCiMrIw0sjSKJCmyshwNEjKcCsaqVApxCqfsptxd1Vv9C64bR0O2tdOP8-Xesh4UQqQotpDz4qRxeBjDGT_CsD1oFKv9a9KPajUo8q-eDcWqf9k7yjoiG4w0LhA2OnGu_8mvgEy5oJW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Discretization of prescribed-time observers in the presence of noises and perturbations</title><source>Elsevier ScienceDirect Journals</source><creator>Efimov, Denis ; Orlov, Yury</creator><creatorcontrib>Efimov, Denis ; Orlov, Yury</creatorcontrib><description>An implicit Euler discretization scheme of the prescribed-time converging observer from Holloway and Krstic, (2019) is proposed, which preserves all main properties of the continuous-time counterpart, and it is investigated how to apply recursively this discretization on any interval of time. In addition, it is demonstrated that the estimation error is robustly stable with respect to the measurement noise with a linear gain (the property that does not hold in the continuous-time setting). The efficiency of the suggested discrete-time observer is illustrated through numeric experiments.</description><identifier>ISSN: 0167-6911</identifier><identifier>EISSN: 1872-7956</identifier><identifier>DOI: 10.1016/j.sysconle.2024.105820</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Automatic Control Engineering ; Computer Science ; Differentiator ; Discretization ; Prescribed-time convergence ; State observer</subject><ispartof>Systems & control letters, 2024-06, Vol.188, p.105820, Article 105820</ispartof><rights>2024 Elsevier B.V.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-f144e683f1915abe1cff92c31c68b74b7b75b917b82eb0cbce9b0f6d79c99cc83</citedby><cites>FETCH-LOGICAL-c346t-f144e683f1915abe1cff92c31c68b74b7b75b917b82eb0cbce9b0f6d79c99cc83</cites><orcidid>0000-0001-8847-5235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sysconle.2024.105820$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-04561768$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Efimov, Denis</creatorcontrib><creatorcontrib>Orlov, Yury</creatorcontrib><title>Discretization of prescribed-time observers in the presence of noises and perturbations</title><title>Systems & control letters</title><description>An implicit Euler discretization scheme of the prescribed-time converging observer from Holloway and Krstic, (2019) is proposed, which preserves all main properties of the continuous-time counterpart, and it is investigated how to apply recursively this discretization on any interval of time. In addition, it is demonstrated that the estimation error is robustly stable with respect to the measurement noise with a linear gain (the property that does not hold in the continuous-time setting). The efficiency of the suggested discrete-time observer is illustrated through numeric experiments.</description><subject>Automatic Control Engineering</subject><subject>Computer Science</subject><subject>Differentiator</subject><subject>Discretization</subject><subject>Prescribed-time convergence</subject><subject>State observer</subject><issn>0167-6911</issn><issn>1872-7956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKt_QWbrYmruPJLJzlKfUHCjuAyTOzc0pZ2UZCzUX-9MR926unD4zoH7MXYNfAYcxO16Fg8RfbuhWcazog_LKuMnbAKVzFKpSnHKJj0oU6EAztlFjGvOecbzfMI-7l3EQJ37qjvn28TbZBeoj5yhJu3clhJvIoU9hZi4NulWdASoRRrg1rtIManbJtlR6D6DOe7ES3Zm602kq587Ze-PD2-L53T5-vSymC9TzAvRpRaKgkSVW1BQ1oYArVUZ5oCiMrIw0sjSKJCmyshwNEjKcCsaqVApxCqfsptxd1Vv9C64bR0O2tdOP8-Xesh4UQqQotpDz4qRxeBjDGT_CsD1oFKv9a9KPajUo8q-eDcWqf9k7yjoiG4w0LhA2OnGu_8mvgEy5oJW</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Efimov, Denis</creator><creator>Orlov, Yury</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8847-5235</orcidid></search><sort><creationdate>20240601</creationdate><title>Discretization of prescribed-time observers in the presence of noises and perturbations</title><author>Efimov, Denis ; Orlov, Yury</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-f144e683f1915abe1cff92c31c68b74b7b75b917b82eb0cbce9b0f6d79c99cc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automatic Control Engineering</topic><topic>Computer Science</topic><topic>Differentiator</topic><topic>Discretization</topic><topic>Prescribed-time convergence</topic><topic>State observer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Efimov, Denis</creatorcontrib><creatorcontrib>Orlov, Yury</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Systems & control letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Efimov, Denis</au><au>Orlov, Yury</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discretization of prescribed-time observers in the presence of noises and perturbations</atitle><jtitle>Systems & control letters</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>188</volume><spage>105820</spage><pages>105820-</pages><artnum>105820</artnum><issn>0167-6911</issn><eissn>1872-7956</eissn><abstract>An implicit Euler discretization scheme of the prescribed-time converging observer from Holloway and Krstic, (2019) is proposed, which preserves all main properties of the continuous-time counterpart, and it is investigated how to apply recursively this discretization on any interval of time. In addition, it is demonstrated that the estimation error is robustly stable with respect to the measurement noise with a linear gain (the property that does not hold in the continuous-time setting). The efficiency of the suggested discrete-time observer is illustrated through numeric experiments.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sysconle.2024.105820</doi><orcidid>https://orcid.org/0000-0001-8847-5235</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6911 |
ispartof | Systems & control letters, 2024-06, Vol.188, p.105820, Article 105820 |
issn | 0167-6911 1872-7956 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04561768v1 |
source | Elsevier ScienceDirect Journals |
subjects | Automatic Control Engineering Computer Science Differentiator Discretization Prescribed-time convergence State observer |
title | Discretization of prescribed-time observers in the presence of noises and perturbations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A48%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discretization%20of%20prescribed-time%20observers%20in%20the%20presence%20of%20noises%20and%20perturbations&rft.jtitle=Systems%20&%20control%20letters&rft.au=Efimov,%20Denis&rft.date=2024-06-01&rft.volume=188&rft.spage=105820&rft.pages=105820-&rft.artnum=105820&rft.issn=0167-6911&rft.eissn=1872-7956&rft_id=info:doi/10.1016/j.sysconle.2024.105820&rft_dat=%3Celsevier_hal_p%3ES0167691124001087%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0167691124001087&rfr_iscdi=true |