Discretization of prescribed-time observers in the presence of noises and perturbations

An implicit Euler discretization scheme of the prescribed-time converging observer from Holloway and Krstic, (2019) is proposed, which preserves all main properties of the continuous-time counterpart, and it is investigated how to apply recursively this discretization on any interval of time. In add...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Systems & control letters 2024-06, Vol.188, p.105820, Article 105820
Hauptverfasser: Efimov, Denis, Orlov, Yury
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105820
container_title Systems & control letters
container_volume 188
creator Efimov, Denis
Orlov, Yury
description An implicit Euler discretization scheme of the prescribed-time converging observer from Holloway and Krstic, (2019) is proposed, which preserves all main properties of the continuous-time counterpart, and it is investigated how to apply recursively this discretization on any interval of time. In addition, it is demonstrated that the estimation error is robustly stable with respect to the measurement noise with a linear gain (the property that does not hold in the continuous-time setting). The efficiency of the suggested discrete-time observer is illustrated through numeric experiments.
doi_str_mv 10.1016/j.sysconle.2024.105820
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04561768v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167691124001087</els_id><sourcerecordid>S0167691124001087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-f144e683f1915abe1cff92c31c68b74b7b75b917b82eb0cbce9b0f6d79c99cc83</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKt_QWbrYmruPJLJzlKfUHCjuAyTOzc0pZ2UZCzUX-9MR926unD4zoH7MXYNfAYcxO16Fg8RfbuhWcazog_LKuMnbAKVzFKpSnHKJj0oU6EAztlFjGvOecbzfMI-7l3EQJ37qjvn28TbZBeoj5yhJu3clhJvIoU9hZi4NulWdASoRRrg1rtIManbJtlR6D6DOe7ES3Zm602kq587Ze-PD2-L53T5-vSymC9TzAvRpRaKgkSVW1BQ1oYArVUZ5oCiMrIw0sjSKJCmyshwNEjKcCsaqVApxCqfsptxd1Vv9C64bR0O2tdOP8-Xesh4UQqQotpDz4qRxeBjDGT_CsD1oFKv9a9KPajUo8q-eDcWqf9k7yjoiG4w0LhA2OnGu_8mvgEy5oJW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Discretization of prescribed-time observers in the presence of noises and perturbations</title><source>Elsevier ScienceDirect Journals</source><creator>Efimov, Denis ; Orlov, Yury</creator><creatorcontrib>Efimov, Denis ; Orlov, Yury</creatorcontrib><description>An implicit Euler discretization scheme of the prescribed-time converging observer from Holloway and Krstic, (2019) is proposed, which preserves all main properties of the continuous-time counterpart, and it is investigated how to apply recursively this discretization on any interval of time. In addition, it is demonstrated that the estimation error is robustly stable with respect to the measurement noise with a linear gain (the property that does not hold in the continuous-time setting). The efficiency of the suggested discrete-time observer is illustrated through numeric experiments.</description><identifier>ISSN: 0167-6911</identifier><identifier>EISSN: 1872-7956</identifier><identifier>DOI: 10.1016/j.sysconle.2024.105820</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Automatic Control Engineering ; Computer Science ; Differentiator ; Discretization ; Prescribed-time convergence ; State observer</subject><ispartof>Systems &amp; control letters, 2024-06, Vol.188, p.105820, Article 105820</ispartof><rights>2024 Elsevier B.V.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-f144e683f1915abe1cff92c31c68b74b7b75b917b82eb0cbce9b0f6d79c99cc83</citedby><cites>FETCH-LOGICAL-c346t-f144e683f1915abe1cff92c31c68b74b7b75b917b82eb0cbce9b0f6d79c99cc83</cites><orcidid>0000-0001-8847-5235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sysconle.2024.105820$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-04561768$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Efimov, Denis</creatorcontrib><creatorcontrib>Orlov, Yury</creatorcontrib><title>Discretization of prescribed-time observers in the presence of noises and perturbations</title><title>Systems &amp; control letters</title><description>An implicit Euler discretization scheme of the prescribed-time converging observer from Holloway and Krstic, (2019) is proposed, which preserves all main properties of the continuous-time counterpart, and it is investigated how to apply recursively this discretization on any interval of time. In addition, it is demonstrated that the estimation error is robustly stable with respect to the measurement noise with a linear gain (the property that does not hold in the continuous-time setting). The efficiency of the suggested discrete-time observer is illustrated through numeric experiments.</description><subject>Automatic Control Engineering</subject><subject>Computer Science</subject><subject>Differentiator</subject><subject>Discretization</subject><subject>Prescribed-time convergence</subject><subject>State observer</subject><issn>0167-6911</issn><issn>1872-7956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKt_QWbrYmruPJLJzlKfUHCjuAyTOzc0pZ2UZCzUX-9MR926unD4zoH7MXYNfAYcxO16Fg8RfbuhWcazog_LKuMnbAKVzFKpSnHKJj0oU6EAztlFjGvOecbzfMI-7l3EQJ37qjvn28TbZBeoj5yhJu3clhJvIoU9hZi4NulWdASoRRrg1rtIManbJtlR6D6DOe7ES3Zm602kq587Ze-PD2-L53T5-vSymC9TzAvRpRaKgkSVW1BQ1oYArVUZ5oCiMrIw0sjSKJCmyshwNEjKcCsaqVApxCqfsptxd1Vv9C64bR0O2tdOP8-Xesh4UQqQotpDz4qRxeBjDGT_CsD1oFKv9a9KPajUo8q-eDcWqf9k7yjoiG4w0LhA2OnGu_8mvgEy5oJW</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Efimov, Denis</creator><creator>Orlov, Yury</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8847-5235</orcidid></search><sort><creationdate>20240601</creationdate><title>Discretization of prescribed-time observers in the presence of noises and perturbations</title><author>Efimov, Denis ; Orlov, Yury</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-f144e683f1915abe1cff92c31c68b74b7b75b917b82eb0cbce9b0f6d79c99cc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automatic Control Engineering</topic><topic>Computer Science</topic><topic>Differentiator</topic><topic>Discretization</topic><topic>Prescribed-time convergence</topic><topic>State observer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Efimov, Denis</creatorcontrib><creatorcontrib>Orlov, Yury</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Systems &amp; control letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Efimov, Denis</au><au>Orlov, Yury</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discretization of prescribed-time observers in the presence of noises and perturbations</atitle><jtitle>Systems &amp; control letters</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>188</volume><spage>105820</spage><pages>105820-</pages><artnum>105820</artnum><issn>0167-6911</issn><eissn>1872-7956</eissn><abstract>An implicit Euler discretization scheme of the prescribed-time converging observer from Holloway and Krstic, (2019) is proposed, which preserves all main properties of the continuous-time counterpart, and it is investigated how to apply recursively this discretization on any interval of time. In addition, it is demonstrated that the estimation error is robustly stable with respect to the measurement noise with a linear gain (the property that does not hold in the continuous-time setting). The efficiency of the suggested discrete-time observer is illustrated through numeric experiments.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sysconle.2024.105820</doi><orcidid>https://orcid.org/0000-0001-8847-5235</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-6911
ispartof Systems & control letters, 2024-06, Vol.188, p.105820, Article 105820
issn 0167-6911
1872-7956
language eng
recordid cdi_hal_primary_oai_HAL_hal_04561768v1
source Elsevier ScienceDirect Journals
subjects Automatic Control Engineering
Computer Science
Differentiator
Discretization
Prescribed-time convergence
State observer
title Discretization of prescribed-time observers in the presence of noises and perturbations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A48%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discretization%20of%20prescribed-time%20observers%20in%20the%20presence%20of%20noises%20and%20perturbations&rft.jtitle=Systems%20&%20control%20letters&rft.au=Efimov,%20Denis&rft.date=2024-06-01&rft.volume=188&rft.spage=105820&rft.pages=105820-&rft.artnum=105820&rft.issn=0167-6911&rft.eissn=1872-7956&rft_id=info:doi/10.1016/j.sysconle.2024.105820&rft_dat=%3Celsevier_hal_p%3ES0167691124001087%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0167691124001087&rfr_iscdi=true