SUPG-based stabilization using a separated representations approach
We have developed a new method for the construction of Streamline Upwind Petrov Galerkin (SUPG) stabilization techniques for the resolution of convection-diffusion equations based on the use of separated representations inside the Proper Generalized Decompositions (PGD) framework. The use of SUPG sc...
Gespeichert in:
Veröffentlicht in: | International journal of material forming 2010-04, Vol.3 (Suppl 1), p.883-886 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 886 |
---|---|
container_issue | Suppl 1 |
container_start_page | 883 |
container_title | International journal of material forming |
container_volume | 3 |
creator | González, D. Debeugny, L. Cueto, E. Chinesta, F. Díez, P. Huerta, A. |
description | We have developed a new method for the construction of Streamline Upwind Petrov Galerkin (SUPG) stabilization techniques for the resolution of convection-diffusion equations based on the use of separated representations inside the Proper Generalized Decompositions (PGD) framework. The use of SUPG schemes produces a consistent stabilization adding a parameter to all the terms of the equation (not only the convective one). SUPG obtains an exact solution for problems in 1D, nevertheless, a generalization does not exist for elements of high order or for any system of convection-diffusion equations. We introduce in this paper a method that achieves stabilization in the context of Proper Generalzied Decomposition (PGD). This class of approximations use a representation of the solution by means of the sum of a finite number of terms of separable functions. Thus it is possible to use the technique of separation of variables in the context of problems of convection-diffusion that will lead to a sequence of problems in 1D where the parameter of stabilization is well known. |
doi_str_mv | 10.1007/s12289-010-0909-7 |
format | Article |
fullrecord | <record><control><sourceid>csuc_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04561741v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_recercat_cat_2072_192193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-34d4730a39199b741c2c9e87b6ef4e593519c8a5cd9d4a2af1a635eca31d26fd3</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOOY-gLdePUTzkrRZjmPoJhQUdOfwmqZbx2xL0gn66U1XGZ4MPJK8_P4v8CPkFtg9MKYeAnA-15QBo0wzTdUFmYDOGM04yMvzmWXXZBbCnsUluFJcTsjybfO6ogUGVyahx6I-1N_Y122THEPdbBNMguvQYx_fveu8C67pT0BIsOt8i3Z3Q64qPAQ3-92nZPP0-L5c0_xl9bxc5NRKpnoqZCmVYCg0aF0oCZZb7eaqyFwlXapFCtrOMbWlLiVyrAAzkTqLAkqeVaWYkrtx7g4PpvP1B_ov02Jt1ovcDD0m0wzi4E-ILIysDUdrvLPOW-xP9PkyFGeKG9ActPiT8W0I3lXnT4CZQbQZRZso2gyijYoZPmZCZJut82bfHn0TNfwT-gER-H-c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SUPG-based stabilization using a separated representations approach</title><source>Springer Nature - Complete Springer Journals</source><source>Recercat</source><creator>González, D. ; Debeugny, L. ; Cueto, E. ; Chinesta, F. ; Díez, P. ; Huerta, A.</creator><creatorcontrib>González, D. ; Debeugny, L. ; Cueto, E. ; Chinesta, F. ; Díez, P. ; Huerta, A.</creatorcontrib><description>We have developed a new method for the construction of Streamline Upwind Petrov Galerkin (SUPG) stabilization techniques for the resolution of convection-diffusion equations based on the use of separated representations inside the Proper Generalized Decompositions (PGD) framework. The use of SUPG schemes produces a consistent stabilization adding a parameter to all the terms of the equation (not only the convective one). SUPG obtains an exact solution for problems in 1D, nevertheless, a generalization does not exist for elements of high order or for any system of convection-diffusion equations. We introduce in this paper a method that achieves stabilization in the context of Proper Generalzied Decomposition (PGD). This class of approximations use a representation of the solution by means of the sum of a finite number of terms of separable functions. Thus it is possible to use the technique of separation of variables in the context of problems of convection-diffusion that will lead to a sequence of problems in 1D where the parameter of stabilization is well known.</description><identifier>ISSN: 1960-6206</identifier><identifier>EISSN: 1960-6214</identifier><identifier>DOI: 10.1007/s12289-010-0909-7</identifier><language>eng</language><publisher>Paris: Springer-Verlag</publisher><subject>Anàlisi numèrica ; CAE) and Design ; Computational Intelligence ; Computer-Aided Engineering (CAD ; Differential equations, Partial ; Elements finits, Mètode dels ; Engineering ; Engineering Sciences ; Equacions diferencials parcials ; Finite element method ; Machines ; Manufacturing ; Matemàtiques i estadística ; Materials Science ; Mechanical Engineering ; Mechanics ; Mètodes numèrics ; New and advanced numerical strategies for material forming: E. Cueto ; Numerical methods and algorithms ; Processes ; Àrees temàtiques de la UPC</subject><ispartof>International journal of material forming, 2010-04, Vol.3 (Suppl 1), p.883-886</ispartof><rights>Springer-Verlag France 2010</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-34d4730a39199b741c2c9e87b6ef4e593519c8a5cd9d4a2af1a635eca31d26fd3</citedby><cites>FETCH-LOGICAL-c407t-34d4730a39199b741c2c9e87b6ef4e593519c8a5cd9d4a2af1a635eca31d26fd3</cites><orcidid>0000-0002-6272-3429 ; 0000-0001-6464-6407 ; 0000-0003-1017-4381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12289-010-0909-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12289-010-0909-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,26954,27904,27905,41468,42537,51299</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04561741$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>González, D.</creatorcontrib><creatorcontrib>Debeugny, L.</creatorcontrib><creatorcontrib>Cueto, E.</creatorcontrib><creatorcontrib>Chinesta, F.</creatorcontrib><creatorcontrib>Díez, P.</creatorcontrib><creatorcontrib>Huerta, A.</creatorcontrib><title>SUPG-based stabilization using a separated representations approach</title><title>International journal of material forming</title><addtitle>Int J Mater Form</addtitle><description>We have developed a new method for the construction of Streamline Upwind Petrov Galerkin (SUPG) stabilization techniques for the resolution of convection-diffusion equations based on the use of separated representations inside the Proper Generalized Decompositions (PGD) framework. The use of SUPG schemes produces a consistent stabilization adding a parameter to all the terms of the equation (not only the convective one). SUPG obtains an exact solution for problems in 1D, nevertheless, a generalization does not exist for elements of high order or for any system of convection-diffusion equations. We introduce in this paper a method that achieves stabilization in the context of Proper Generalzied Decomposition (PGD). This class of approximations use a representation of the solution by means of the sum of a finite number of terms of separable functions. Thus it is possible to use the technique of separation of variables in the context of problems of convection-diffusion that will lead to a sequence of problems in 1D where the parameter of stabilization is well known.</description><subject>Anàlisi numèrica</subject><subject>CAE) and Design</subject><subject>Computational Intelligence</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Differential equations, Partial</subject><subject>Elements finits, Mètode dels</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Equacions diferencials parcials</subject><subject>Finite element method</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Matemàtiques i estadística</subject><subject>Materials Science</subject><subject>Mechanical Engineering</subject><subject>Mechanics</subject><subject>Mètodes numèrics</subject><subject>New and advanced numerical strategies for material forming: E. Cueto</subject><subject>Numerical methods and algorithms</subject><subject>Processes</subject><subject>Àrees temàtiques de la UPC</subject><issn>1960-6206</issn><issn>1960-6214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNp9kEFLwzAUx4MoOOY-gLdePUTzkrRZjmPoJhQUdOfwmqZbx2xL0gn66U1XGZ4MPJK8_P4v8CPkFtg9MKYeAnA-15QBo0wzTdUFmYDOGM04yMvzmWXXZBbCnsUluFJcTsjybfO6ogUGVyahx6I-1N_Y122THEPdbBNMguvQYx_fveu8C67pT0BIsOt8i3Z3Q64qPAQ3-92nZPP0-L5c0_xl9bxc5NRKpnoqZCmVYCg0aF0oCZZb7eaqyFwlXapFCtrOMbWlLiVyrAAzkTqLAkqeVaWYkrtx7g4PpvP1B_ov02Jt1ovcDD0m0wzi4E-ILIysDUdrvLPOW-xP9PkyFGeKG9ActPiT8W0I3lXnT4CZQbQZRZso2gyijYoZPmZCZJut82bfHn0TNfwT-gER-H-c</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>González, D.</creator><creator>Debeugny, L.</creator><creator>Cueto, E.</creator><creator>Chinesta, F.</creator><creator>Díez, P.</creator><creator>Huerta, A.</creator><general>Springer-Verlag</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6272-3429</orcidid><orcidid>https://orcid.org/0000-0001-6464-6407</orcidid><orcidid>https://orcid.org/0000-0003-1017-4381</orcidid></search><sort><creationdate>20100401</creationdate><title>SUPG-based stabilization using a separated representations approach</title><author>González, D. ; Debeugny, L. ; Cueto, E. ; Chinesta, F. ; Díez, P. ; Huerta, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-34d4730a39199b741c2c9e87b6ef4e593519c8a5cd9d4a2af1a635eca31d26fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anàlisi numèrica</topic><topic>CAE) and Design</topic><topic>Computational Intelligence</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Differential equations, Partial</topic><topic>Elements finits, Mètode dels</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Equacions diferencials parcials</topic><topic>Finite element method</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Matemàtiques i estadística</topic><topic>Materials Science</topic><topic>Mechanical Engineering</topic><topic>Mechanics</topic><topic>Mètodes numèrics</topic><topic>New and advanced numerical strategies for material forming: E. Cueto</topic><topic>Numerical methods and algorithms</topic><topic>Processes</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González, D.</creatorcontrib><creatorcontrib>Debeugny, L.</creatorcontrib><creatorcontrib>Cueto, E.</creatorcontrib><creatorcontrib>Chinesta, F.</creatorcontrib><creatorcontrib>Díez, P.</creatorcontrib><creatorcontrib>Huerta, A.</creatorcontrib><collection>CrossRef</collection><collection>Recercat</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of material forming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González, D.</au><au>Debeugny, L.</au><au>Cueto, E.</au><au>Chinesta, F.</au><au>Díez, P.</au><au>Huerta, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SUPG-based stabilization using a separated representations approach</atitle><jtitle>International journal of material forming</jtitle><stitle>Int J Mater Form</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>3</volume><issue>Suppl 1</issue><spage>883</spage><epage>886</epage><pages>883-886</pages><issn>1960-6206</issn><eissn>1960-6214</eissn><abstract>We have developed a new method for the construction of Streamline Upwind Petrov Galerkin (SUPG) stabilization techniques for the resolution of convection-diffusion equations based on the use of separated representations inside the Proper Generalized Decompositions (PGD) framework. The use of SUPG schemes produces a consistent stabilization adding a parameter to all the terms of the equation (not only the convective one). SUPG obtains an exact solution for problems in 1D, nevertheless, a generalization does not exist for elements of high order or for any system of convection-diffusion equations. We introduce in this paper a method that achieves stabilization in the context of Proper Generalzied Decomposition (PGD). This class of approximations use a representation of the solution by means of the sum of a finite number of terms of separable functions. Thus it is possible to use the technique of separation of variables in the context of problems of convection-diffusion that will lead to a sequence of problems in 1D where the parameter of stabilization is well known.</abstract><cop>Paris</cop><pub>Springer-Verlag</pub><doi>10.1007/s12289-010-0909-7</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-6272-3429</orcidid><orcidid>https://orcid.org/0000-0001-6464-6407</orcidid><orcidid>https://orcid.org/0000-0003-1017-4381</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1960-6206 |
ispartof | International journal of material forming, 2010-04, Vol.3 (Suppl 1), p.883-886 |
issn | 1960-6206 1960-6214 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04561741v1 |
source | Springer Nature - Complete Springer Journals; Recercat |
subjects | Anàlisi numèrica CAE) and Design Computational Intelligence Computer-Aided Engineering (CAD Differential equations, Partial Elements finits, Mètode dels Engineering Engineering Sciences Equacions diferencials parcials Finite element method Machines Manufacturing Matemàtiques i estadística Materials Science Mechanical Engineering Mechanics Mètodes numèrics New and advanced numerical strategies for material forming: E. Cueto Numerical methods and algorithms Processes Àrees temàtiques de la UPC |
title | SUPG-based stabilization using a separated representations approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A06%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SUPG-based%20stabilization%20using%20a%20separated%20representations%20approach&rft.jtitle=International%20journal%20of%20material%20forming&rft.au=Gonz%C3%A1lez,%20D.&rft.date=2010-04-01&rft.volume=3&rft.issue=Suppl%201&rft.spage=883&rft.epage=886&rft.pages=883-886&rft.issn=1960-6206&rft.eissn=1960-6214&rft_id=info:doi/10.1007/s12289-010-0909-7&rft_dat=%3Ccsuc_hal_p%3Eoai_recercat_cat_2072_192193%3C/csuc_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |