Approaching the structure of rotating bodies from dimension reduction

We show that the two-dimensional structure of a rigidly rotating self-gravitating body is accessible with relatively good precision by assuming a purely spheroidal stratification. With this hypothesis, the two-dimensional problem becomes one-dimensional, and consists in solving two coupled fixed-poi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2024-04, Vol.684, p.A59
Hauptverfasser: Staelen, C., Huré, J.-M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A59
container_title Astronomy and astrophysics (Berlin)
container_volume 684
creator Staelen, C.
Huré, J.-M.
description We show that the two-dimensional structure of a rigidly rotating self-gravitating body is accessible with relatively good precision by assuming a purely spheroidal stratification. With this hypothesis, the two-dimensional problem becomes one-dimensional, and consists in solving two coupled fixed-point equations in terms of equatorial mass density and eccentricity of isopycnics. We propose a simple algorithm of resolution based on the self-consistent field method. Compared to the full unconstrained-surface two-dimensional problem, the precision in the normalized enthalpy field is better than 10 −3 in absolute, and the computing time is drastically reduced. In addition, this one-dimensional approach is fully appropriate to fast rotators, works for any density profile (including any barotropic equation of state), and can account for mass density jumps in the system, including the existence of an ambient pressure. Several tests are given.
doi_str_mv 10.1051/0004-6361/202348590
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04558440v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04558440v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-6f51605fd1b55d7558e93180d73bd6762cf7da8b1dc6a2903b4afa3ca56455713</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EEqHwC1i8MoSev90xqgpFqsQCs-X4gwS1cWWnSPx7EhV1urv3nrvhQeiRwDMBQZYAwGvJJFlSoIxrsYIrVBHOaA2Ky2tUXYhbdFfK9zRSolmFNs3xmJN1XT984bELuIz55MZTDjhFnNNox3nTJt-HgmNOB-z7QxhKnwacg5_YqbtHN9HuS3j4rwv0-bL5WG_r3fvr27rZ1Y4qPdYyCiJBRE9aIbwSQocVIxq8Yq2XSlIXlbe6Jd5JS1fAWm6jZc4KyYVQhC3Q0_lvZ_fmmPuDzb8m2d5sm52ZM5g4zTn8zCw7sy6nUnKIlwMCZrZmZidmdmIu1tgf5o5fAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Approaching the structure of rotating bodies from dimension reduction</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Staelen, C. ; Huré, J.-M.</creator><creatorcontrib>Staelen, C. ; Huré, J.-M.</creatorcontrib><description>We show that the two-dimensional structure of a rigidly rotating self-gravitating body is accessible with relatively good precision by assuming a purely spheroidal stratification. With this hypothesis, the two-dimensional problem becomes one-dimensional, and consists in solving two coupled fixed-point equations in terms of equatorial mass density and eccentricity of isopycnics. We propose a simple algorithm of resolution based on the self-consistent field method. Compared to the full unconstrained-surface two-dimensional problem, the precision in the normalized enthalpy field is better than 10 −3 in absolute, and the computing time is drastically reduced. In addition, this one-dimensional approach is fully appropriate to fast rotators, works for any density profile (including any barotropic equation of state), and can account for mass density jumps in the system, including the existence of an ambient pressure. Several tests are given.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/202348590</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>Astrophysics ; Physics</subject><ispartof>Astronomy and astrophysics (Berlin), 2024-04, Vol.684, p.A59</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-6f51605fd1b55d7558e93180d73bd6762cf7da8b1dc6a2903b4afa3ca56455713</cites><orcidid>0000-0002-9967-2522 ; 0000-0002-0770-1905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3727,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04558440$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Staelen, C.</creatorcontrib><creatorcontrib>Huré, J.-M.</creatorcontrib><title>Approaching the structure of rotating bodies from dimension reduction</title><title>Astronomy and astrophysics (Berlin)</title><description>We show that the two-dimensional structure of a rigidly rotating self-gravitating body is accessible with relatively good precision by assuming a purely spheroidal stratification. With this hypothesis, the two-dimensional problem becomes one-dimensional, and consists in solving two coupled fixed-point equations in terms of equatorial mass density and eccentricity of isopycnics. We propose a simple algorithm of resolution based on the self-consistent field method. Compared to the full unconstrained-surface two-dimensional problem, the precision in the normalized enthalpy field is better than 10 −3 in absolute, and the computing time is drastically reduced. In addition, this one-dimensional approach is fully appropriate to fast rotators, works for any density profile (including any barotropic equation of state), and can account for mass density jumps in the system, including the existence of an ambient pressure. Several tests are given.</description><subject>Astrophysics</subject><subject>Physics</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAQhi0EEqHwC1i8MoSev90xqgpFqsQCs-X4gwS1cWWnSPx7EhV1urv3nrvhQeiRwDMBQZYAwGvJJFlSoIxrsYIrVBHOaA2Ky2tUXYhbdFfK9zRSolmFNs3xmJN1XT984bELuIz55MZTDjhFnNNox3nTJt-HgmNOB-z7QxhKnwacg5_YqbtHN9HuS3j4rwv0-bL5WG_r3fvr27rZ1Y4qPdYyCiJBRE9aIbwSQocVIxq8Yq2XSlIXlbe6Jd5JS1fAWm6jZc4KyYVQhC3Q0_lvZ_fmmPuDzb8m2d5sm52ZM5g4zTn8zCw7sy6nUnKIlwMCZrZmZidmdmIu1tgf5o5fAw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Staelen, C.</creator><creator>Huré, J.-M.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9967-2522</orcidid><orcidid>https://orcid.org/0000-0002-0770-1905</orcidid></search><sort><creationdate>20240401</creationdate><title>Approaching the structure of rotating bodies from dimension reduction</title><author>Staelen, C. ; Huré, J.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-6f51605fd1b55d7558e93180d73bd6762cf7da8b1dc6a2903b4afa3ca56455713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astrophysics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Staelen, C.</creatorcontrib><creatorcontrib>Huré, J.-M.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Staelen, C.</au><au>Huré, J.-M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approaching the structure of rotating bodies from dimension reduction</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>684</volume><spage>A59</spage><pages>A59-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>We show that the two-dimensional structure of a rigidly rotating self-gravitating body is accessible with relatively good precision by assuming a purely spheroidal stratification. With this hypothesis, the two-dimensional problem becomes one-dimensional, and consists in solving two coupled fixed-point equations in terms of equatorial mass density and eccentricity of isopycnics. We propose a simple algorithm of resolution based on the self-consistent field method. Compared to the full unconstrained-surface two-dimensional problem, the precision in the normalized enthalpy field is better than 10 −3 in absolute, and the computing time is drastically reduced. In addition, this one-dimensional approach is fully appropriate to fast rotators, works for any density profile (including any barotropic equation of state), and can account for mass density jumps in the system, including the existence of an ambient pressure. Several tests are given.</abstract><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202348590</doi><orcidid>https://orcid.org/0000-0002-9967-2522</orcidid><orcidid>https://orcid.org/0000-0002-0770-1905</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2024-04, Vol.684, p.A59
issn 0004-6361
1432-0746
1432-0756
language eng
recordid cdi_hal_primary_oai_HAL_hal_04558440v1
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; EZB-FREE-00999 freely available EZB journals
subjects Astrophysics
Physics
title Approaching the structure of rotating bodies from dimension reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A35%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approaching%20the%20structure%20of%20rotating%20bodies%20from%20dimension%20reduction&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Staelen,%20C.&rft.date=2024-04-01&rft.volume=684&rft.spage=A59&rft.pages=A59-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202348590&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04558440v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true