Using airborne LiDAR to map forest microclimate temperature buffering or amplification

Mapping the microclimate effect of forest canopies on understory temperature requires spatially explicit predictors at very fine spatial resolutions. Light Detection And Ranging (LiDAR) offers promising prospects in that regard, as it allows capturing the vertical dimension of vegetation structure a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing of environment 2023-12, Vol.298 (1), p.113820, Article 113820
Hauptverfasser: Gril, Eva, Laslier, Marianne, Gallet-Moron, Emilie, Durrieu, Sylvie, Spicher, Fabien, Le Roux, Vincent, Brasseur, Boris, Haesen, Stef, Van Meerbeek, Koenraad, Decocq, Guillaume, Marrec, Ronan, Lenoir, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 113820
container_title Remote sensing of environment
container_volume 298
creator Gril, Eva
Laslier, Marianne
Gallet-Moron, Emilie
Durrieu, Sylvie
Spicher, Fabien
Le Roux, Vincent
Brasseur, Boris
Haesen, Stef
Van Meerbeek, Koenraad
Decocq, Guillaume
Marrec, Ronan
Lenoir, Jonathan
description Mapping the microclimate effect of forest canopies on understory temperature requires spatially explicit predictors at very fine spatial resolutions. Light Detection And Ranging (LiDAR) offers promising prospects in that regard, as it allows capturing the vertical dimension of vegetation structure at a very high resolution over large areas. To explore the potential of airborne LiDAR-derived metrics to predict understory temperature, we focused on the forest of Blois (France), a 2740-ha lowland managed forest dominated by oak (Quercus petraea). We installed HOBO sensors measuring microclimate air temperature at one-metre height in 53 stands of contrasting vegetation structure, from open to very dense and from young regeneration to mature stages. Using a nearby weather station as the macroclimate temperature reference, we calculated the slope (log scale) coefficient of the linear regression between microclimate and macroclimate, as a simple parameter describing the microclimatic buffering (log(slope)  0) capacity of the habitat. An airborne LiDAR flight was conducted during summer 2021, matching the timing of our temperature measurements. From the resulting 3D point cloud, three complementary metrics of forest structure were derived: the maximum height, the Plant Area Index and the Vertical Complexity Index. They were calculated for circular buffers of different radii (1 m to 100 m) centred on each HOBO sensor. We found that the 5-m radius combining the three metrics into a single multivariate model explained the greatest proportion of variance in the microclimate effect of each stand (R2 = 0.91). We mapped the buffering or amplification effect of vegetation structure on understory temperatures over the entire forest of Blois at a 10-m resolution. 91.4% of the surface of the forest was significantly buffered relative to macroclimate temperature, while 2.7% was amplified, especially in road verges, clear-cut and regeneration areas. Based on our simple linear model, we were able to derive understory air temperature maps for any temporal resolution (i.e. hourly, daily, or seasonal). The results highlight the great capacity of airborne LiDAR to retrieve forest structure parameters and generate high-resolution maps of the thermal environment. Applications for mapping the buffering or amplification of microclimate temperature are plentiful, especially in the context of climate change. They include improving the understanding of p
doi_str_mv 10.1016/j.rse.2023.113820
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04556088v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425723003711</els_id><sourcerecordid>3040381289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-44b6e2ab2e9bdc73d9857cc5ae6fdfda742ed78e188a0758cd05efe34423c8cf3</originalsourceid><addsrcrecordid>eNqVkU1rGzEQhkVoIa7TH9Cbjslh3dHHWjI5GTeJCwuFEOcqtNpRK7O72khrQ_991mzpsdDTwPA8w_C-hHxhsGLA1l-Pq5RxxYGLFWNCc7giC6bVpgAF8gNZAAhZSF6qa_Ip5yMAK7ViC_J6yKH_SW1IdUw90ip82z7TMdLODtTHhHmkXXApujZ0dkQ6YjdgsuMpIa1P3mO6-DFR2w1t8MHZMcT-hnz0ts34-c9cksPjw8tuX1Q_nr7vtlXhpGRjIWW9Rm5rjpu6cUo0G10q50qLa9_4xirJsVEamdYWVKldAyV6FFJy4bTzYknu5ru_bGuGNL2Yfptog9lvK3PZgSzLNWh95v_Bsom9ndkhxbfTFILpQnbYtrbHeMpGgAShGdebCWUzOoWUc0L_9zYDc-nGHM3Ujbl0Y-ZuJud-dnDK5hwwmewC9g6bkNCNponhH_Y7I_OWpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040381289</pqid></control><display><type>article</type><title>Using airborne LiDAR to map forest microclimate temperature buffering or amplification</title><source>Elsevier ScienceDirect Journals</source><creator>Gril, Eva ; Laslier, Marianne ; Gallet-Moron, Emilie ; Durrieu, Sylvie ; Spicher, Fabien ; Le Roux, Vincent ; Brasseur, Boris ; Haesen, Stef ; Van Meerbeek, Koenraad ; Decocq, Guillaume ; Marrec, Ronan ; Lenoir, Jonathan</creator><creatorcontrib>Gril, Eva ; Laslier, Marianne ; Gallet-Moron, Emilie ; Durrieu, Sylvie ; Spicher, Fabien ; Le Roux, Vincent ; Brasseur, Boris ; Haesen, Stef ; Van Meerbeek, Koenraad ; Decocq, Guillaume ; Marrec, Ronan ; Lenoir, Jonathan</creatorcontrib><description>Mapping the microclimate effect of forest canopies on understory temperature requires spatially explicit predictors at very fine spatial resolutions. Light Detection And Ranging (LiDAR) offers promising prospects in that regard, as it allows capturing the vertical dimension of vegetation structure at a very high resolution over large areas. To explore the potential of airborne LiDAR-derived metrics to predict understory temperature, we focused on the forest of Blois (France), a 2740-ha lowland managed forest dominated by oak (Quercus petraea). We installed HOBO sensors measuring microclimate air temperature at one-metre height in 53 stands of contrasting vegetation structure, from open to very dense and from young regeneration to mature stages. Using a nearby weather station as the macroclimate temperature reference, we calculated the slope (log scale) coefficient of the linear regression between microclimate and macroclimate, as a simple parameter describing the microclimatic buffering (log(slope) &lt; 0) or amplification (log(slope) &gt; 0) capacity of the habitat. An airborne LiDAR flight was conducted during summer 2021, matching the timing of our temperature measurements. From the resulting 3D point cloud, three complementary metrics of forest structure were derived: the maximum height, the Plant Area Index and the Vertical Complexity Index. They were calculated for circular buffers of different radii (1 m to 100 m) centred on each HOBO sensor. We found that the 5-m radius combining the three metrics into a single multivariate model explained the greatest proportion of variance in the microclimate effect of each stand (R2 = 0.91). We mapped the buffering or amplification effect of vegetation structure on understory temperatures over the entire forest of Blois at a 10-m resolution. 91.4% of the surface of the forest was significantly buffered relative to macroclimate temperature, while 2.7% was amplified, especially in road verges, clear-cut and regeneration areas. Based on our simple linear model, we were able to derive understory air temperature maps for any temporal resolution (i.e. hourly, daily, or seasonal). The results highlight the great capacity of airborne LiDAR to retrieve forest structure parameters and generate high-resolution maps of the thermal environment. Applications for mapping the buffering or amplification of microclimate temperature are plentiful, especially in the context of climate change. They include improving the understanding of physiological processes such as thermoregulation or phenology, modelling the thermal connectivity of the landscape, improving species redistribution models, spotting microrefugia for conservation, informing forest management for tree regeneration or wildfire control, or even prioritising cooling recreational areas for humans to escape heatwaves in urban forests. [Display omitted] •Airborne LiDAR is ideal to predict forest thermal environment at a high resolution.•We used Maximum height, Plant Area &amp; Vertical Complexity Index as structure metrics.•Forest structure explained 91% of microclimate variability at a 10-m resolution.•We mapped the buffering or amplification effect of forest on microclimate temperature.•Ecologists, conservationists and forest managers would highly benefit from such maps.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2023.113820</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>air temperature ; Airborne LiDAR ; ALS ; Amplification ; Bioclimatology ; Buffering ; Canopy height ; clearcutting ; climate change ; data collection ; Ecology, environment ; Engineering Sciences ; environment ; flight ; Forest management ; Forest structure ; forests ; France ; habitats ; landscapes ; Leaf area index ; lidar ; Life Sciences ; linear models ; Microclimate ; Open areas ; phenology ; Plant area index ; Quercus petraea ; Regeneration ; regression analysis ; Resolution ; Signal and Image processing ; Slope and equilibrium ; species ; summer ; Temperature extremes ; thermoregulation ; trees ; Understory ; Urban forest ; variance ; Vegetation layers ; Vertical complexity index ; weather ; Weather station ; wildland fire management</subject><ispartof>Remote sensing of environment, 2023-12, Vol.298 (1), p.113820, Article 113820</ispartof><rights>2023 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-44b6e2ab2e9bdc73d9857cc5ae6fdfda742ed78e188a0758cd05efe34423c8cf3</citedby><cites>FETCH-LOGICAL-c441t-44b6e2ab2e9bdc73d9857cc5ae6fdfda742ed78e188a0758cd05efe34423c8cf3</cites><orcidid>0000-0003-1579-5013 ; 0000-0002-7340-8264 ; 0000-0001-5443-3707 ; 0000-0002-9999-955X ; 0000-0003-1855-8494 ; 0000-0002-5206-5426 ; 0000-0001-6145-9614 ; 0000-0001-9262-5873 ; 0000-0003-0638-9582 ; 0000-0003-1607-4939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0034425723003711$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04556088$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gril, Eva</creatorcontrib><creatorcontrib>Laslier, Marianne</creatorcontrib><creatorcontrib>Gallet-Moron, Emilie</creatorcontrib><creatorcontrib>Durrieu, Sylvie</creatorcontrib><creatorcontrib>Spicher, Fabien</creatorcontrib><creatorcontrib>Le Roux, Vincent</creatorcontrib><creatorcontrib>Brasseur, Boris</creatorcontrib><creatorcontrib>Haesen, Stef</creatorcontrib><creatorcontrib>Van Meerbeek, Koenraad</creatorcontrib><creatorcontrib>Decocq, Guillaume</creatorcontrib><creatorcontrib>Marrec, Ronan</creatorcontrib><creatorcontrib>Lenoir, Jonathan</creatorcontrib><title>Using airborne LiDAR to map forest microclimate temperature buffering or amplification</title><title>Remote sensing of environment</title><description>Mapping the microclimate effect of forest canopies on understory temperature requires spatially explicit predictors at very fine spatial resolutions. Light Detection And Ranging (LiDAR) offers promising prospects in that regard, as it allows capturing the vertical dimension of vegetation structure at a very high resolution over large areas. To explore the potential of airborne LiDAR-derived metrics to predict understory temperature, we focused on the forest of Blois (France), a 2740-ha lowland managed forest dominated by oak (Quercus petraea). We installed HOBO sensors measuring microclimate air temperature at one-metre height in 53 stands of contrasting vegetation structure, from open to very dense and from young regeneration to mature stages. Using a nearby weather station as the macroclimate temperature reference, we calculated the slope (log scale) coefficient of the linear regression between microclimate and macroclimate, as a simple parameter describing the microclimatic buffering (log(slope) &lt; 0) or amplification (log(slope) &gt; 0) capacity of the habitat. An airborne LiDAR flight was conducted during summer 2021, matching the timing of our temperature measurements. From the resulting 3D point cloud, three complementary metrics of forest structure were derived: the maximum height, the Plant Area Index and the Vertical Complexity Index. They were calculated for circular buffers of different radii (1 m to 100 m) centred on each HOBO sensor. We found that the 5-m radius combining the three metrics into a single multivariate model explained the greatest proportion of variance in the microclimate effect of each stand (R2 = 0.91). We mapped the buffering or amplification effect of vegetation structure on understory temperatures over the entire forest of Blois at a 10-m resolution. 91.4% of the surface of the forest was significantly buffered relative to macroclimate temperature, while 2.7% was amplified, especially in road verges, clear-cut and regeneration areas. Based on our simple linear model, we were able to derive understory air temperature maps for any temporal resolution (i.e. hourly, daily, or seasonal). The results highlight the great capacity of airborne LiDAR to retrieve forest structure parameters and generate high-resolution maps of the thermal environment. Applications for mapping the buffering or amplification of microclimate temperature are plentiful, especially in the context of climate change. They include improving the understanding of physiological processes such as thermoregulation or phenology, modelling the thermal connectivity of the landscape, improving species redistribution models, spotting microrefugia for conservation, informing forest management for tree regeneration or wildfire control, or even prioritising cooling recreational areas for humans to escape heatwaves in urban forests. [Display omitted] •Airborne LiDAR is ideal to predict forest thermal environment at a high resolution.•We used Maximum height, Plant Area &amp; Vertical Complexity Index as structure metrics.•Forest structure explained 91% of microclimate variability at a 10-m resolution.•We mapped the buffering or amplification effect of forest on microclimate temperature.•Ecologists, conservationists and forest managers would highly benefit from such maps.</description><subject>air temperature</subject><subject>Airborne LiDAR</subject><subject>ALS</subject><subject>Amplification</subject><subject>Bioclimatology</subject><subject>Buffering</subject><subject>Canopy height</subject><subject>clearcutting</subject><subject>climate change</subject><subject>data collection</subject><subject>Ecology, environment</subject><subject>Engineering Sciences</subject><subject>environment</subject><subject>flight</subject><subject>Forest management</subject><subject>Forest structure</subject><subject>forests</subject><subject>France</subject><subject>habitats</subject><subject>landscapes</subject><subject>Leaf area index</subject><subject>lidar</subject><subject>Life Sciences</subject><subject>linear models</subject><subject>Microclimate</subject><subject>Open areas</subject><subject>phenology</subject><subject>Plant area index</subject><subject>Quercus petraea</subject><subject>Regeneration</subject><subject>regression analysis</subject><subject>Resolution</subject><subject>Signal and Image processing</subject><subject>Slope and equilibrium</subject><subject>species</subject><subject>summer</subject><subject>Temperature extremes</subject><subject>thermoregulation</subject><subject>trees</subject><subject>Understory</subject><subject>Urban forest</subject><subject>variance</subject><subject>Vegetation layers</subject><subject>Vertical complexity index</subject><subject>weather</subject><subject>Weather station</subject><subject>wildland fire management</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqVkU1rGzEQhkVoIa7TH9Cbjslh3dHHWjI5GTeJCwuFEOcqtNpRK7O72khrQ_991mzpsdDTwPA8w_C-hHxhsGLA1l-Pq5RxxYGLFWNCc7giC6bVpgAF8gNZAAhZSF6qa_Ip5yMAK7ViC_J6yKH_SW1IdUw90ip82z7TMdLODtTHhHmkXXApujZ0dkQ6YjdgsuMpIa1P3mO6-DFR2w1t8MHZMcT-hnz0ts34-c9cksPjw8tuX1Q_nr7vtlXhpGRjIWW9Rm5rjpu6cUo0G10q50qLa9_4xirJsVEamdYWVKldAyV6FFJy4bTzYknu5ru_bGuGNL2Yfptog9lvK3PZgSzLNWh95v_Bsom9ndkhxbfTFILpQnbYtrbHeMpGgAShGdebCWUzOoWUc0L_9zYDc-nGHM3Ujbl0Y-ZuJud-dnDK5hwwmewC9g6bkNCNponhH_Y7I_OWpQ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Gril, Eva</creator><creator>Laslier, Marianne</creator><creator>Gallet-Moron, Emilie</creator><creator>Durrieu, Sylvie</creator><creator>Spicher, Fabien</creator><creator>Le Roux, Vincent</creator><creator>Brasseur, Boris</creator><creator>Haesen, Stef</creator><creator>Van Meerbeek, Koenraad</creator><creator>Decocq, Guillaume</creator><creator>Marrec, Ronan</creator><creator>Lenoir, Jonathan</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1579-5013</orcidid><orcidid>https://orcid.org/0000-0002-7340-8264</orcidid><orcidid>https://orcid.org/0000-0001-5443-3707</orcidid><orcidid>https://orcid.org/0000-0002-9999-955X</orcidid><orcidid>https://orcid.org/0000-0003-1855-8494</orcidid><orcidid>https://orcid.org/0000-0002-5206-5426</orcidid><orcidid>https://orcid.org/0000-0001-6145-9614</orcidid><orcidid>https://orcid.org/0000-0001-9262-5873</orcidid><orcidid>https://orcid.org/0000-0003-0638-9582</orcidid><orcidid>https://orcid.org/0000-0003-1607-4939</orcidid></search><sort><creationdate>20231201</creationdate><title>Using airborne LiDAR to map forest microclimate temperature buffering or amplification</title><author>Gril, Eva ; Laslier, Marianne ; Gallet-Moron, Emilie ; Durrieu, Sylvie ; Spicher, Fabien ; Le Roux, Vincent ; Brasseur, Boris ; Haesen, Stef ; Van Meerbeek, Koenraad ; Decocq, Guillaume ; Marrec, Ronan ; Lenoir, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-44b6e2ab2e9bdc73d9857cc5ae6fdfda742ed78e188a0758cd05efe34423c8cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>air temperature</topic><topic>Airborne LiDAR</topic><topic>ALS</topic><topic>Amplification</topic><topic>Bioclimatology</topic><topic>Buffering</topic><topic>Canopy height</topic><topic>clearcutting</topic><topic>climate change</topic><topic>data collection</topic><topic>Ecology, environment</topic><topic>Engineering Sciences</topic><topic>environment</topic><topic>flight</topic><topic>Forest management</topic><topic>Forest structure</topic><topic>forests</topic><topic>France</topic><topic>habitats</topic><topic>landscapes</topic><topic>Leaf area index</topic><topic>lidar</topic><topic>Life Sciences</topic><topic>linear models</topic><topic>Microclimate</topic><topic>Open areas</topic><topic>phenology</topic><topic>Plant area index</topic><topic>Quercus petraea</topic><topic>Regeneration</topic><topic>regression analysis</topic><topic>Resolution</topic><topic>Signal and Image processing</topic><topic>Slope and equilibrium</topic><topic>species</topic><topic>summer</topic><topic>Temperature extremes</topic><topic>thermoregulation</topic><topic>trees</topic><topic>Understory</topic><topic>Urban forest</topic><topic>variance</topic><topic>Vegetation layers</topic><topic>Vertical complexity index</topic><topic>weather</topic><topic>Weather station</topic><topic>wildland fire management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gril, Eva</creatorcontrib><creatorcontrib>Laslier, Marianne</creatorcontrib><creatorcontrib>Gallet-Moron, Emilie</creatorcontrib><creatorcontrib>Durrieu, Sylvie</creatorcontrib><creatorcontrib>Spicher, Fabien</creatorcontrib><creatorcontrib>Le Roux, Vincent</creatorcontrib><creatorcontrib>Brasseur, Boris</creatorcontrib><creatorcontrib>Haesen, Stef</creatorcontrib><creatorcontrib>Van Meerbeek, Koenraad</creatorcontrib><creatorcontrib>Decocq, Guillaume</creatorcontrib><creatorcontrib>Marrec, Ronan</creatorcontrib><creatorcontrib>Lenoir, Jonathan</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gril, Eva</au><au>Laslier, Marianne</au><au>Gallet-Moron, Emilie</au><au>Durrieu, Sylvie</au><au>Spicher, Fabien</au><au>Le Roux, Vincent</au><au>Brasseur, Boris</au><au>Haesen, Stef</au><au>Van Meerbeek, Koenraad</au><au>Decocq, Guillaume</au><au>Marrec, Ronan</au><au>Lenoir, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using airborne LiDAR to map forest microclimate temperature buffering or amplification</atitle><jtitle>Remote sensing of environment</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>298</volume><issue>1</issue><spage>113820</spage><pages>113820-</pages><artnum>113820</artnum><issn>0034-4257</issn><eissn>1879-0704</eissn><abstract>Mapping the microclimate effect of forest canopies on understory temperature requires spatially explicit predictors at very fine spatial resolutions. Light Detection And Ranging (LiDAR) offers promising prospects in that regard, as it allows capturing the vertical dimension of vegetation structure at a very high resolution over large areas. To explore the potential of airborne LiDAR-derived metrics to predict understory temperature, we focused on the forest of Blois (France), a 2740-ha lowland managed forest dominated by oak (Quercus petraea). We installed HOBO sensors measuring microclimate air temperature at one-metre height in 53 stands of contrasting vegetation structure, from open to very dense and from young regeneration to mature stages. Using a nearby weather station as the macroclimate temperature reference, we calculated the slope (log scale) coefficient of the linear regression between microclimate and macroclimate, as a simple parameter describing the microclimatic buffering (log(slope) &lt; 0) or amplification (log(slope) &gt; 0) capacity of the habitat. An airborne LiDAR flight was conducted during summer 2021, matching the timing of our temperature measurements. From the resulting 3D point cloud, three complementary metrics of forest structure were derived: the maximum height, the Plant Area Index and the Vertical Complexity Index. They were calculated for circular buffers of different radii (1 m to 100 m) centred on each HOBO sensor. We found that the 5-m radius combining the three metrics into a single multivariate model explained the greatest proportion of variance in the microclimate effect of each stand (R2 = 0.91). We mapped the buffering or amplification effect of vegetation structure on understory temperatures over the entire forest of Blois at a 10-m resolution. 91.4% of the surface of the forest was significantly buffered relative to macroclimate temperature, while 2.7% was amplified, especially in road verges, clear-cut and regeneration areas. Based on our simple linear model, we were able to derive understory air temperature maps for any temporal resolution (i.e. hourly, daily, or seasonal). The results highlight the great capacity of airborne LiDAR to retrieve forest structure parameters and generate high-resolution maps of the thermal environment. Applications for mapping the buffering or amplification of microclimate temperature are plentiful, especially in the context of climate change. They include improving the understanding of physiological processes such as thermoregulation or phenology, modelling the thermal connectivity of the landscape, improving species redistribution models, spotting microrefugia for conservation, informing forest management for tree regeneration or wildfire control, or even prioritising cooling recreational areas for humans to escape heatwaves in urban forests. [Display omitted] •Airborne LiDAR is ideal to predict forest thermal environment at a high resolution.•We used Maximum height, Plant Area &amp; Vertical Complexity Index as structure metrics.•Forest structure explained 91% of microclimate variability at a 10-m resolution.•We mapped the buffering or amplification effect of forest on microclimate temperature.•Ecologists, conservationists and forest managers would highly benefit from such maps.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2023.113820</doi><orcidid>https://orcid.org/0000-0003-1579-5013</orcidid><orcidid>https://orcid.org/0000-0002-7340-8264</orcidid><orcidid>https://orcid.org/0000-0001-5443-3707</orcidid><orcidid>https://orcid.org/0000-0002-9999-955X</orcidid><orcidid>https://orcid.org/0000-0003-1855-8494</orcidid><orcidid>https://orcid.org/0000-0002-5206-5426</orcidid><orcidid>https://orcid.org/0000-0001-6145-9614</orcidid><orcidid>https://orcid.org/0000-0001-9262-5873</orcidid><orcidid>https://orcid.org/0000-0003-0638-9582</orcidid><orcidid>https://orcid.org/0000-0003-1607-4939</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-4257
ispartof Remote sensing of environment, 2023-12, Vol.298 (1), p.113820, Article 113820
issn 0034-4257
1879-0704
language eng
recordid cdi_hal_primary_oai_HAL_hal_04556088v2
source Elsevier ScienceDirect Journals
subjects air temperature
Airborne LiDAR
ALS
Amplification
Bioclimatology
Buffering
Canopy height
clearcutting
climate change
data collection
Ecology, environment
Engineering Sciences
environment
flight
Forest management
Forest structure
forests
France
habitats
landscapes
Leaf area index
lidar
Life Sciences
linear models
Microclimate
Open areas
phenology
Plant area index
Quercus petraea
Regeneration
regression analysis
Resolution
Signal and Image processing
Slope and equilibrium
species
summer
Temperature extremes
thermoregulation
trees
Understory
Urban forest
variance
Vegetation layers
Vertical complexity index
weather
Weather station
wildland fire management
title Using airborne LiDAR to map forest microclimate temperature buffering or amplification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T11%3A14%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20airborne%20LiDAR%20to%20map%20forest%20microclimate%20temperature%20buffering%20or%20amplification&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Gril,%20Eva&rft.date=2023-12-01&rft.volume=298&rft.issue=1&rft.spage=113820&rft.pages=113820-&rft.artnum=113820&rft.issn=0034-4257&rft.eissn=1879-0704&rft_id=info:doi/10.1016/j.rse.2023.113820&rft_dat=%3Cproquest_hal_p%3E3040381289%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040381289&rft_id=info:pmid/&rft_els_id=S0034425723003711&rfr_iscdi=true