Optimal Operation of Distribution Networks Considering Renewable Energy Sources Integration and Demand Side Response
This paper demonstrates the effectiveness of Demand Side Response (DSR) with renewable integration by solving the stochastic optimal operation problem (OOP) in the IEEE 118-bus distribution system over 24 h. An Improved Walrus Optimization Algorithm (I-WaOA) is proposed to minimize costs, reduce vol...
Gespeichert in:
Veröffentlicht in: | Sustainability 2023-12, Vol.15 (24), p.16707 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | 16707 |
container_title | Sustainability |
container_volume | 15 |
creator | Hachemi, Ahmed T Sadaoui, Fares Saim, Abdelhakim Ebeed, Mohamed Abbou, Hossam E. A Arif, Salem |
description | This paper demonstrates the effectiveness of Demand Side Response (DSR) with renewable integration by solving the stochastic optimal operation problem (OOP) in the IEEE 118-bus distribution system over 24 h. An Improved Walrus Optimization Algorithm (I-WaOA) is proposed to minimize costs, reduce voltage deviations, and enhance stability under uncertain loads, generation, and pricing. The proposed I-WaOA utilizes three strategies: the fitness-distance balance method, quasi-opposite-based learning, and Cauchy mutation. The I-WaOA optimally locates and sizes photovoltaic (PV) ratings and wind turbine (WT) capacities and determines the optimal power factor of WT with DSR. Using Monte Carlo simulations (MCS) and probability density functions (PDF), the uncertainties in renewable energy generation, load demand, and energy costs are represented. The results show that the proposed I-WaOA approach can significantly reduce costs, improve voltage stability, and mitigate voltage deviations. The total annual costs are reduced by 91%, from 3.8377 × 107 USD to 3.4737 × 106 USD. Voltage deviations are decreased by 63%, from 98.6633 per unit (p.u.) to 36.0990 p.u., and the system stability index is increased by 11%, from 2.444 × 103 p.u. to 2.7245 × 103 p.u., when contrasted with traditional methods. |
doi_str_mv | 10.3390/su152416707 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04538463v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779344141</galeid><sourcerecordid>A779344141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-2f090989dd9b06768d7017770743bb159a37877275ad25e24cc59558d1778b3e3</originalsourceid><addsrcrecordid>eNpVkU9P4zAQxSO0K4GAE1_AEieECnZsx_GxKv8qVVuJwtlykkkwpHbWdih8e9xttcvah7FHv3l6T5NlZwRfUSrxdRgJzxkpBBYH2VGOBZkQzPGPb-_D7DSEV5wOpUSS4iiLyyGate7RcgCvo3EWuRbdmBC9qcY__18QN86_BTRzNpgGvLEdegQLG131gG4t-O4TrdzoawhobiN0eyVtG3QD621ZpcE0FIakASfZz1b3AU739Th7vrt9mj1MFsv7-Wy6mNSU8jjJWyyxLGXTyAoXoigbgYkQKR-jVUW41FSUQuSC6ybnkLO65pLzsklQWVGgx9nFTvdF92rwKaf_VE4b9TBdqG0PM05LVtB3ktjzHTt493uEENVrSmSTPZVLzCQVVOBEXe2oTvegjG1d9LpOt4G1qZ2F1qT-VAhJGSOM_LOwH0hMhI_Y6TEENV89_s9e7tjauxA8tH89E6y2K1bfVky_ACLBlkw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904937370</pqid></control><display><type>article</type><title>Optimal Operation of Distribution Networks Considering Renewable Energy Sources Integration and Demand Side Response</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hachemi, Ahmed T ; Sadaoui, Fares ; Saim, Abdelhakim ; Ebeed, Mohamed ; Abbou, Hossam E. A ; Arif, Salem</creator><creatorcontrib>Hachemi, Ahmed T ; Sadaoui, Fares ; Saim, Abdelhakim ; Ebeed, Mohamed ; Abbou, Hossam E. A ; Arif, Salem</creatorcontrib><description>This paper demonstrates the effectiveness of Demand Side Response (DSR) with renewable integration by solving the stochastic optimal operation problem (OOP) in the IEEE 118-bus distribution system over 24 h. An Improved Walrus Optimization Algorithm (I-WaOA) is proposed to minimize costs, reduce voltage deviations, and enhance stability under uncertain loads, generation, and pricing. The proposed I-WaOA utilizes three strategies: the fitness-distance balance method, quasi-opposite-based learning, and Cauchy mutation. The I-WaOA optimally locates and sizes photovoltaic (PV) ratings and wind turbine (WT) capacities and determines the optimal power factor of WT with DSR. Using Monte Carlo simulations (MCS) and probability density functions (PDF), the uncertainties in renewable energy generation, load demand, and energy costs are represented. The results show that the proposed I-WaOA approach can significantly reduce costs, improve voltage stability, and mitigate voltage deviations. The total annual costs are reduced by 91%, from 3.8377 × 107 USD to 3.4737 × 106 USD. Voltage deviations are decreased by 63%, from 98.6633 per unit (p.u.) to 36.0990 p.u., and the system stability index is increased by 11%, from 2.444 × 103 p.u. to 2.7245 × 103 p.u., when contrasted with traditional methods.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su152416707</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; Control algorithms ; Electric power ; Energy consumption ; Energy industry ; Energy resources ; Energy storage ; Engineering Sciences ; Green technology ; Load ; Optimization algorithms ; Optimization techniques ; Renewable resources ; Solar energy</subject><ispartof>Sustainability, 2023-12, Vol.15 (24), p.16707</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-2f090989dd9b06768d7017770743bb159a37877275ad25e24cc59558d1778b3e3</citedby><cites>FETCH-LOGICAL-c335t-2f090989dd9b06768d7017770743bb159a37877275ad25e24cc59558d1778b3e3</cites><orcidid>0009-0001-0171-8263 ; 0000-0002-6808-9254 ; 0000-0003-4706-3490 ; 0009-0004-4359-7764 ; 0000-0003-2025-9821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04538463$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hachemi, Ahmed T</creatorcontrib><creatorcontrib>Sadaoui, Fares</creatorcontrib><creatorcontrib>Saim, Abdelhakim</creatorcontrib><creatorcontrib>Ebeed, Mohamed</creatorcontrib><creatorcontrib>Abbou, Hossam E. A</creatorcontrib><creatorcontrib>Arif, Salem</creatorcontrib><title>Optimal Operation of Distribution Networks Considering Renewable Energy Sources Integration and Demand Side Response</title><title>Sustainability</title><description>This paper demonstrates the effectiveness of Demand Side Response (DSR) with renewable integration by solving the stochastic optimal operation problem (OOP) in the IEEE 118-bus distribution system over 24 h. An Improved Walrus Optimization Algorithm (I-WaOA) is proposed to minimize costs, reduce voltage deviations, and enhance stability under uncertain loads, generation, and pricing. The proposed I-WaOA utilizes three strategies: the fitness-distance balance method, quasi-opposite-based learning, and Cauchy mutation. The I-WaOA optimally locates and sizes photovoltaic (PV) ratings and wind turbine (WT) capacities and determines the optimal power factor of WT with DSR. Using Monte Carlo simulations (MCS) and probability density functions (PDF), the uncertainties in renewable energy generation, load demand, and energy costs are represented. The results show that the proposed I-WaOA approach can significantly reduce costs, improve voltage stability, and mitigate voltage deviations. The total annual costs are reduced by 91%, from 3.8377 × 107 USD to 3.4737 × 106 USD. Voltage deviations are decreased by 63%, from 98.6633 per unit (p.u.) to 36.0990 p.u., and the system stability index is increased by 11%, from 2.444 × 103 p.u. to 2.7245 × 103 p.u., when contrasted with traditional methods.</description><subject>Alternative energy sources</subject><subject>Control algorithms</subject><subject>Electric power</subject><subject>Energy consumption</subject><subject>Energy industry</subject><subject>Energy resources</subject><subject>Energy storage</subject><subject>Engineering Sciences</subject><subject>Green technology</subject><subject>Load</subject><subject>Optimization algorithms</subject><subject>Optimization techniques</subject><subject>Renewable resources</subject><subject>Solar energy</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkU9P4zAQxSO0K4GAE1_AEieECnZsx_GxKv8qVVuJwtlykkkwpHbWdih8e9xttcvah7FHv3l6T5NlZwRfUSrxdRgJzxkpBBYH2VGOBZkQzPGPb-_D7DSEV5wOpUSS4iiLyyGate7RcgCvo3EWuRbdmBC9qcY__18QN86_BTRzNpgGvLEdegQLG131gG4t-O4TrdzoawhobiN0eyVtG3QD621ZpcE0FIakASfZz1b3AU739Th7vrt9mj1MFsv7-Wy6mNSU8jjJWyyxLGXTyAoXoigbgYkQKR-jVUW41FSUQuSC6ybnkLO65pLzsklQWVGgx9nFTvdF92rwKaf_VE4b9TBdqG0PM05LVtB3ktjzHTt493uEENVrSmSTPZVLzCQVVOBEXe2oTvegjG1d9LpOt4G1qZ2F1qT-VAhJGSOM_LOwH0hMhI_Y6TEENV89_s9e7tjauxA8tH89E6y2K1bfVky_ACLBlkw</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Hachemi, Ahmed T</creator><creator>Sadaoui, Fares</creator><creator>Saim, Abdelhakim</creator><creator>Ebeed, Mohamed</creator><creator>Abbou, Hossam E. A</creator><creator>Arif, Salem</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0009-0001-0171-8263</orcidid><orcidid>https://orcid.org/0000-0002-6808-9254</orcidid><orcidid>https://orcid.org/0000-0003-4706-3490</orcidid><orcidid>https://orcid.org/0009-0004-4359-7764</orcidid><orcidid>https://orcid.org/0000-0003-2025-9821</orcidid></search><sort><creationdate>20231201</creationdate><title>Optimal Operation of Distribution Networks Considering Renewable Energy Sources Integration and Demand Side Response</title><author>Hachemi, Ahmed T ; Sadaoui, Fares ; Saim, Abdelhakim ; Ebeed, Mohamed ; Abbou, Hossam E. A ; Arif, Salem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-2f090989dd9b06768d7017770743bb159a37877275ad25e24cc59558d1778b3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alternative energy sources</topic><topic>Control algorithms</topic><topic>Electric power</topic><topic>Energy consumption</topic><topic>Energy industry</topic><topic>Energy resources</topic><topic>Energy storage</topic><topic>Engineering Sciences</topic><topic>Green technology</topic><topic>Load</topic><topic>Optimization algorithms</topic><topic>Optimization techniques</topic><topic>Renewable resources</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hachemi, Ahmed T</creatorcontrib><creatorcontrib>Sadaoui, Fares</creatorcontrib><creatorcontrib>Saim, Abdelhakim</creatorcontrib><creatorcontrib>Ebeed, Mohamed</creatorcontrib><creatorcontrib>Abbou, Hossam E. A</creatorcontrib><creatorcontrib>Arif, Salem</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hachemi, Ahmed T</au><au>Sadaoui, Fares</au><au>Saim, Abdelhakim</au><au>Ebeed, Mohamed</au><au>Abbou, Hossam E. A</au><au>Arif, Salem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Operation of Distribution Networks Considering Renewable Energy Sources Integration and Demand Side Response</atitle><jtitle>Sustainability</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>15</volume><issue>24</issue><spage>16707</spage><pages>16707-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>This paper demonstrates the effectiveness of Demand Side Response (DSR) with renewable integration by solving the stochastic optimal operation problem (OOP) in the IEEE 118-bus distribution system over 24 h. An Improved Walrus Optimization Algorithm (I-WaOA) is proposed to minimize costs, reduce voltage deviations, and enhance stability under uncertain loads, generation, and pricing. The proposed I-WaOA utilizes three strategies: the fitness-distance balance method, quasi-opposite-based learning, and Cauchy mutation. The I-WaOA optimally locates and sizes photovoltaic (PV) ratings and wind turbine (WT) capacities and determines the optimal power factor of WT with DSR. Using Monte Carlo simulations (MCS) and probability density functions (PDF), the uncertainties in renewable energy generation, load demand, and energy costs are represented. The results show that the proposed I-WaOA approach can significantly reduce costs, improve voltage stability, and mitigate voltage deviations. The total annual costs are reduced by 91%, from 3.8377 × 107 USD to 3.4737 × 106 USD. Voltage deviations are decreased by 63%, from 98.6633 per unit (p.u.) to 36.0990 p.u., and the system stability index is increased by 11%, from 2.444 × 103 p.u. to 2.7245 × 103 p.u., when contrasted with traditional methods.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su152416707</doi><orcidid>https://orcid.org/0009-0001-0171-8263</orcidid><orcidid>https://orcid.org/0000-0002-6808-9254</orcidid><orcidid>https://orcid.org/0000-0003-4706-3490</orcidid><orcidid>https://orcid.org/0009-0004-4359-7764</orcidid><orcidid>https://orcid.org/0000-0003-2025-9821</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2023-12, Vol.15 (24), p.16707 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04538463v1 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Alternative energy sources Control algorithms Electric power Energy consumption Energy industry Energy resources Energy storage Engineering Sciences Green technology Load Optimization algorithms Optimization techniques Renewable resources Solar energy |
title | Optimal Operation of Distribution Networks Considering Renewable Energy Sources Integration and Demand Side Response |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A42%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Operation%20of%20Distribution%20Networks%20Considering%20Renewable%20Energy%20Sources%20Integration%20and%20Demand%20Side%20Response&rft.jtitle=Sustainability&rft.au=Hachemi,%20Ahmed%20T&rft.date=2023-12-01&rft.volume=15&rft.issue=24&rft.spage=16707&rft.pages=16707-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su152416707&rft_dat=%3Cgale_hal_p%3EA779344141%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904937370&rft_id=info:pmid/&rft_galeid=A779344141&rfr_iscdi=true |