Identifying Second-Gradient Continuum Models in Particle-Based Materials with Pairwise Interactions Using Acoustic Tensor Methodology
This paper discusses wave propagation in unbounded particle-based materials described by a second-gradient continuum model, recently introduced by the authors, to provide an identification technique. The term particle-based materials denotes materials modeled as assemblies of particles, disregarding...
Gespeichert in:
Veröffentlicht in: | Journal of elasticity 2024, Vol.156 (2), p.623-639 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 639 |
---|---|
container_issue | 2 |
container_start_page | 623 |
container_title | Journal of elasticity |
container_volume | 156 |
creator | La Valle, Gabriele Soize, Christian |
description | This paper discusses wave propagation in unbounded particle-based materials described by a second-gradient continuum model, recently introduced by the authors, to provide an identification technique. The term
particle-based
materials denotes materials modeled as assemblies of particles, disregarding typical
granular
material properties such as contact topology, granulometry, grain sizes, and shapes. This work introduces a center-symmetric second-gradient continuum resulting from pairwise interactions. The corresponding Euler-Lagrange equations (equilibrium equations) are derived using the least action principle. This approach unveils non-classical interactions within subdomains. A novel, symmetric, and positive-definite acoustic tensor is constructed, allowing for an exploration of wave propagation through perturbation techniques. The properties of this acoustic tensor enable the extension of an identification procedure from Cauchy (classical) elasticity to the proposed second-gradient continuum model. Potential applications concern polymers, composite materials, and liquid crystals. |
doi_str_mv | 10.1007/s10659-024-10067-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04533388v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094803257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-532a9961b1b29810eaba7160ba8066e2034e0a331264c95de52ebbdee57e3c523</originalsourceid><addsrcrecordid>eNp9kc2O0zAUhS0EEqXwAqwssWJhuPaNE2dZKpip1AokZtaWk9y2HnXswU5m1AfgvXEJgh0ry-fnk-XD2FsJHyRA8zFLqHUrQFWi3OtGmGdsIXWDQtVGPmcLwKYSqFG_ZK9yvgOA1lSwYD83A4XR788-HPh36mMYxFVygy8qX8dihWm657s40ClzH_g3l0bfn0h8cpkGvnMjJe-K9-THY3F9evKZ-CYU3fWjjyHz23yhr_o45dLlNxRyTHxH4zEO8RQP59fsxb4w6M2fc8luv3y-WV-L7derzXq1FT22zSg0Kte2texkp1ojgVznGllD5wzUNSnAisAhSlVXfasH0oq6biDSDWGvFS7Z-5l7dCf7kPy9S2cbnbfXq629aFBpRDTmUZbsuzn7kOKPifJo7-KUQnmeRWgrA6jK_y6ZmlN9ijkn2v_FSrCXaew8jS3T2N_TWFNKOJdyCYcDpX_o_7R-AabJknI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094803257</pqid></control><display><type>article</type><title>Identifying Second-Gradient Continuum Models in Particle-Based Materials with Pairwise Interactions Using Acoustic Tensor Methodology</title><source>SpringerNature Journals</source><creator>La Valle, Gabriele ; Soize, Christian</creator><creatorcontrib>La Valle, Gabriele ; Soize, Christian</creatorcontrib><description>This paper discusses wave propagation in unbounded particle-based materials described by a second-gradient continuum model, recently introduced by the authors, to provide an identification technique. The term
particle-based
materials denotes materials modeled as assemblies of particles, disregarding typical
granular
material properties such as contact topology, granulometry, grain sizes, and shapes. This work introduces a center-symmetric second-gradient continuum resulting from pairwise interactions. The corresponding Euler-Lagrange equations (equilibrium equations) are derived using the least action principle. This approach unveils non-classical interactions within subdomains. A novel, symmetric, and positive-definite acoustic tensor is constructed, allowing for an exploration of wave propagation through perturbation techniques. The properties of this acoustic tensor enable the extension of an identification procedure from Cauchy (classical) elasticity to the proposed second-gradient continuum model. Potential applications concern polymers, composite materials, and liquid crystals.</description><identifier>ISSN: 0374-3535</identifier><identifier>EISSN: 1573-2681</identifier><identifier>DOI: 10.1007/s10659-024-10067-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acoustic propagation ; Biomechanics ; Classical and Continuum Physics ; Classical Mechanics ; Composite materials ; Continuum modeling ; Engineering ; Engineering Sciences ; Equilibrium equations ; Euler-Lagrange equation ; Grain size ; Granular materials ; Liquid crystals ; Material properties ; Materials Science ; Mathematical Applications in the Physical Sciences ; Mechanics ; Perturbation methods ; Principle of least action ; Tensors ; Theoretical and Applied Mechanics ; Topology ; Wave propagation</subject><ispartof>Journal of elasticity, 2024, Vol.156 (2), p.623-639</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-532a9961b1b29810eaba7160ba8066e2034e0a331264c95de52ebbdee57e3c523</citedby><cites>FETCH-LOGICAL-c397t-532a9961b1b29810eaba7160ba8066e2034e0a331264c95de52ebbdee57e3c523</cites><orcidid>0000-0002-1083-6771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10659-024-10067-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10659-024-10067-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://univ-eiffel.hal.science/hal-04533388$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>La Valle, Gabriele</creatorcontrib><creatorcontrib>Soize, Christian</creatorcontrib><title>Identifying Second-Gradient Continuum Models in Particle-Based Materials with Pairwise Interactions Using Acoustic Tensor Methodology</title><title>Journal of elasticity</title><addtitle>J Elast</addtitle><description>This paper discusses wave propagation in unbounded particle-based materials described by a second-gradient continuum model, recently introduced by the authors, to provide an identification technique. The term
particle-based
materials denotes materials modeled as assemblies of particles, disregarding typical
granular
material properties such as contact topology, granulometry, grain sizes, and shapes. This work introduces a center-symmetric second-gradient continuum resulting from pairwise interactions. The corresponding Euler-Lagrange equations (equilibrium equations) are derived using the least action principle. This approach unveils non-classical interactions within subdomains. A novel, symmetric, and positive-definite acoustic tensor is constructed, allowing for an exploration of wave propagation through perturbation techniques. The properties of this acoustic tensor enable the extension of an identification procedure from Cauchy (classical) elasticity to the proposed second-gradient continuum model. Potential applications concern polymers, composite materials, and liquid crystals.</description><subject>Acoustic propagation</subject><subject>Biomechanics</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Composite materials</subject><subject>Continuum modeling</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Equilibrium equations</subject><subject>Euler-Lagrange equation</subject><subject>Grain size</subject><subject>Granular materials</subject><subject>Liquid crystals</subject><subject>Material properties</subject><subject>Materials Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mechanics</subject><subject>Perturbation methods</subject><subject>Principle of least action</subject><subject>Tensors</subject><subject>Theoretical and Applied Mechanics</subject><subject>Topology</subject><subject>Wave propagation</subject><issn>0374-3535</issn><issn>1573-2681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc2O0zAUhS0EEqXwAqwssWJhuPaNE2dZKpip1AokZtaWk9y2HnXswU5m1AfgvXEJgh0ry-fnk-XD2FsJHyRA8zFLqHUrQFWi3OtGmGdsIXWDQtVGPmcLwKYSqFG_ZK9yvgOA1lSwYD83A4XR788-HPh36mMYxFVygy8qX8dihWm657s40ClzH_g3l0bfn0h8cpkGvnMjJe-K9-THY3F9evKZ-CYU3fWjjyHz23yhr_o45dLlNxRyTHxH4zEO8RQP59fsxb4w6M2fc8luv3y-WV-L7derzXq1FT22zSg0Kte2texkp1ojgVznGllD5wzUNSnAisAhSlVXfasH0oq6biDSDWGvFS7Z-5l7dCf7kPy9S2cbnbfXq629aFBpRDTmUZbsuzn7kOKPifJo7-KUQnmeRWgrA6jK_y6ZmlN9ijkn2v_FSrCXaew8jS3T2N_TWFNKOJdyCYcDpX_o_7R-AabJknI</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>La Valle, Gabriele</creator><creator>Soize, Christian</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1083-6771</orcidid></search><sort><creationdate>2024</creationdate><title>Identifying Second-Gradient Continuum Models in Particle-Based Materials with Pairwise Interactions Using Acoustic Tensor Methodology</title><author>La Valle, Gabriele ; Soize, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-532a9961b1b29810eaba7160ba8066e2034e0a331264c95de52ebbdee57e3c523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic propagation</topic><topic>Biomechanics</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Composite materials</topic><topic>Continuum modeling</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Equilibrium equations</topic><topic>Euler-Lagrange equation</topic><topic>Grain size</topic><topic>Granular materials</topic><topic>Liquid crystals</topic><topic>Material properties</topic><topic>Materials Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mechanics</topic><topic>Perturbation methods</topic><topic>Principle of least action</topic><topic>Tensors</topic><topic>Theoretical and Applied Mechanics</topic><topic>Topology</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>La Valle, Gabriele</creatorcontrib><creatorcontrib>Soize, Christian</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of elasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>La Valle, Gabriele</au><au>Soize, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying Second-Gradient Continuum Models in Particle-Based Materials with Pairwise Interactions Using Acoustic Tensor Methodology</atitle><jtitle>Journal of elasticity</jtitle><stitle>J Elast</stitle><date>2024</date><risdate>2024</risdate><volume>156</volume><issue>2</issue><spage>623</spage><epage>639</epage><pages>623-639</pages><issn>0374-3535</issn><eissn>1573-2681</eissn><abstract>This paper discusses wave propagation in unbounded particle-based materials described by a second-gradient continuum model, recently introduced by the authors, to provide an identification technique. The term
particle-based
materials denotes materials modeled as assemblies of particles, disregarding typical
granular
material properties such as contact topology, granulometry, grain sizes, and shapes. This work introduces a center-symmetric second-gradient continuum resulting from pairwise interactions. The corresponding Euler-Lagrange equations (equilibrium equations) are derived using the least action principle. This approach unveils non-classical interactions within subdomains. A novel, symmetric, and positive-definite acoustic tensor is constructed, allowing for an exploration of wave propagation through perturbation techniques. The properties of this acoustic tensor enable the extension of an identification procedure from Cauchy (classical) elasticity to the proposed second-gradient continuum model. Potential applications concern polymers, composite materials, and liquid crystals.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10659-024-10067-8</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1083-6771</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0374-3535 |
ispartof | Journal of elasticity, 2024, Vol.156 (2), p.623-639 |
issn | 0374-3535 1573-2681 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04533388v1 |
source | SpringerNature Journals |
subjects | Acoustic propagation Biomechanics Classical and Continuum Physics Classical Mechanics Composite materials Continuum modeling Engineering Engineering Sciences Equilibrium equations Euler-Lagrange equation Grain size Granular materials Liquid crystals Material properties Materials Science Mathematical Applications in the Physical Sciences Mechanics Perturbation methods Principle of least action Tensors Theoretical and Applied Mechanics Topology Wave propagation |
title | Identifying Second-Gradient Continuum Models in Particle-Based Materials with Pairwise Interactions Using Acoustic Tensor Methodology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A37%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20Second-Gradient%20Continuum%20Models%20in%20Particle-Based%20Materials%20with%20Pairwise%20Interactions%20Using%20Acoustic%20Tensor%20Methodology&rft.jtitle=Journal%20of%20elasticity&rft.au=La%20Valle,%20Gabriele&rft.date=2024&rft.volume=156&rft.issue=2&rft.spage=623&rft.epage=639&rft.pages=623-639&rft.issn=0374-3535&rft.eissn=1573-2681&rft_id=info:doi/10.1007/s10659-024-10067-8&rft_dat=%3Cproquest_hal_p%3E3094803257%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3094803257&rft_id=info:pmid/&rfr_iscdi=true |