Feasibility Study of Upper Limb Control Method Based on Electromyography-Angle Relation
The paper describes the method of predicting the angular position of the human upper limb using EMG signals. A neural network with fuzzy logic was used for this purpose. The main goal of the work, namely, to demonstrate that a neural network with fuzzy logic is a useful tool for predicting motion ba...
Gespeichert in:
Veröffentlicht in: | Journal of computational and nonlinear dynamics 2023-06, Vol.18 (6) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Journal of computational and nonlinear dynamics |
container_volume | 18 |
creator | Lento, Bianca Aoustin, Yannick Zielinska, Teresa |
description | The paper describes the method of predicting the angular position of the human upper limb using EMG signals. A neural network with fuzzy logic was used for this purpose. The main goal of the work, namely, to demonstrate that a neural network with fuzzy logic is a useful tool for predicting motion based on EMG signals, has been completed. Two EMG signals from those muscles of the human arm that show the greatest activity during the load lifting are used. When determining the driving torques, the differences between the intended and the actual angular position are taken into account, and a simplified dynamics model was used for the calculations. In order to validate the method, the actual and predicted angles are compared and the differences between the moments determined on the basis of anticipated angular positions and the moments provided by the opensim simulator using real angular positions are examined. |
doi_str_mv | 10.1115/1.4056918 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04533356v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04533356v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-a279t-649d9834686bb0110f0e6eae0b1721a0c72cb0be1f8fca3b3be65d700609d603</originalsourceid><addsrcrecordid>eNpFkEFLw0AQhRdRsFYP3j3s1UPqTDa7SY61WCtEBK14XHaTTZuSZMNuKuTfm9JSTzPM--bBe4TcI8wQkT_hLAIuUkwuyAQ55wFGIbs878ivyY33O4AoShM-IT9Lo3ylq7rqB_rV74uB2pJ-d51xNKsaTRe27Z2t6bvpt7agz8qbgtqWvtQmH4VmsBunuu0QzNtNbeinqVVf2faWXJWq9ubuNKdkvXxZL1ZB9vH6tphngQrjtA9ElBZpwiKRCK0BEUowwigDGuMQFeRxmGvQBsukzBXTTBvBixhAQFoIYFPyeLTdqlp2rmqUG6RVlVzNM3m4QcQZY1z84j-bO-u9M-X5AUEeypMoT-WN7MORVb4xcmf3rh1TjBRPBTL2B5hIaaU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Feasibility Study of Upper Limb Control Method Based on Electromyography-Angle Relation</title><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Lento, Bianca ; Aoustin, Yannick ; Zielinska, Teresa</creator><creatorcontrib>Lento, Bianca ; Aoustin, Yannick ; Zielinska, Teresa</creatorcontrib><description>The paper describes the method of predicting the angular position of the human upper limb using EMG signals. A neural network with fuzzy logic was used for this purpose. The main goal of the work, namely, to demonstrate that a neural network with fuzzy logic is a useful tool for predicting motion based on EMG signals, has been completed. Two EMG signals from those muscles of the human arm that show the greatest activity during the load lifting are used. When determining the driving torques, the differences between the intended and the actual angular position are taken into account, and a simplified dynamics model was used for the calculations. In order to validate the method, the actual and predicted angles are compared and the differences between the moments determined on the basis of anticipated angular positions and the moments provided by the opensim simulator using real angular positions are examined.</description><identifier>ISSN: 1555-1415</identifier><identifier>EISSN: 1555-1423</identifier><identifier>DOI: 10.1115/1.4056918</identifier><language>eng</language><publisher>ASME</publisher><subject>Engineering Sciences ; Mathematical Physics ; Physics</subject><ispartof>Journal of computational and nonlinear dynamics, 2023-06, Vol.18 (6)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a279t-649d9834686bb0110f0e6eae0b1721a0c72cb0be1f8fca3b3be65d700609d603</cites><orcidid>0000-0001-9495-8364 ; 0000-0002-3484-117X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908,38503</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04533356$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lento, Bianca</creatorcontrib><creatorcontrib>Aoustin, Yannick</creatorcontrib><creatorcontrib>Zielinska, Teresa</creatorcontrib><title>Feasibility Study of Upper Limb Control Method Based on Electromyography-Angle Relation</title><title>Journal of computational and nonlinear dynamics</title><addtitle>J. Comput. Nonlinear Dynam</addtitle><description>The paper describes the method of predicting the angular position of the human upper limb using EMG signals. A neural network with fuzzy logic was used for this purpose. The main goal of the work, namely, to demonstrate that a neural network with fuzzy logic is a useful tool for predicting motion based on EMG signals, has been completed. Two EMG signals from those muscles of the human arm that show the greatest activity during the load lifting are used. When determining the driving torques, the differences between the intended and the actual angular position are taken into account, and a simplified dynamics model was used for the calculations. In order to validate the method, the actual and predicted angles are compared and the differences between the moments determined on the basis of anticipated angular positions and the moments provided by the opensim simulator using real angular positions are examined.</description><subject>Engineering Sciences</subject><subject>Mathematical Physics</subject><subject>Physics</subject><issn>1555-1415</issn><issn>1555-1423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLw0AQhRdRsFYP3j3s1UPqTDa7SY61WCtEBK14XHaTTZuSZMNuKuTfm9JSTzPM--bBe4TcI8wQkT_hLAIuUkwuyAQ55wFGIbs878ivyY33O4AoShM-IT9Lo3ylq7rqB_rV74uB2pJ-d51xNKsaTRe27Z2t6bvpt7agz8qbgtqWvtQmH4VmsBunuu0QzNtNbeinqVVf2faWXJWq9ubuNKdkvXxZL1ZB9vH6tphngQrjtA9ElBZpwiKRCK0BEUowwigDGuMQFeRxmGvQBsukzBXTTBvBixhAQFoIYFPyeLTdqlp2rmqUG6RVlVzNM3m4QcQZY1z84j-bO-u9M-X5AUEeypMoT-WN7MORVb4xcmf3rh1TjBRPBTL2B5hIaaU</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Lento, Bianca</creator><creator>Aoustin, Yannick</creator><creator>Zielinska, Teresa</creator><general>ASME</general><general>American Society of Mechanical Engineers (ASME)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9495-8364</orcidid><orcidid>https://orcid.org/0000-0002-3484-117X</orcidid></search><sort><creationdate>20230601</creationdate><title>Feasibility Study of Upper Limb Control Method Based on Electromyography-Angle Relation</title><author>Lento, Bianca ; Aoustin, Yannick ; Zielinska, Teresa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a279t-649d9834686bb0110f0e6eae0b1721a0c72cb0be1f8fca3b3be65d700609d603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Engineering Sciences</topic><topic>Mathematical Physics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lento, Bianca</creatorcontrib><creatorcontrib>Aoustin, Yannick</creatorcontrib><creatorcontrib>Zielinska, Teresa</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of computational and nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lento, Bianca</au><au>Aoustin, Yannick</au><au>Zielinska, Teresa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feasibility Study of Upper Limb Control Method Based on Electromyography-Angle Relation</atitle><jtitle>Journal of computational and nonlinear dynamics</jtitle><stitle>J. Comput. Nonlinear Dynam</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>18</volume><issue>6</issue><issn>1555-1415</issn><eissn>1555-1423</eissn><abstract>The paper describes the method of predicting the angular position of the human upper limb using EMG signals. A neural network with fuzzy logic was used for this purpose. The main goal of the work, namely, to demonstrate that a neural network with fuzzy logic is a useful tool for predicting motion based on EMG signals, has been completed. Two EMG signals from those muscles of the human arm that show the greatest activity during the load lifting are used. When determining the driving torques, the differences between the intended and the actual angular position are taken into account, and a simplified dynamics model was used for the calculations. In order to validate the method, the actual and predicted angles are compared and the differences between the moments determined on the basis of anticipated angular positions and the moments provided by the opensim simulator using real angular positions are examined.</abstract><pub>ASME</pub><doi>10.1115/1.4056918</doi><orcidid>https://orcid.org/0000-0001-9495-8364</orcidid><orcidid>https://orcid.org/0000-0002-3484-117X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1555-1415 |
ispartof | Journal of computational and nonlinear dynamics, 2023-06, Vol.18 (6) |
issn | 1555-1415 1555-1423 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04533356v1 |
source | ASME Transactions Journals (Current); Alma/SFX Local Collection |
subjects | Engineering Sciences Mathematical Physics Physics |
title | Feasibility Study of Upper Limb Control Method Based on Electromyography-Angle Relation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A27%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feasibility%20Study%20of%20Upper%20Limb%20Control%20Method%20Based%20on%20Electromyography-Angle%20Relation&rft.jtitle=Journal%20of%20computational%20and%20nonlinear%20dynamics&rft.au=Lento,%20Bianca&rft.date=2023-06-01&rft.volume=18&rft.issue=6&rft.issn=1555-1415&rft.eissn=1555-1423&rft_id=info:doi/10.1115/1.4056918&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04533356v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |