Linfty/L1 duality results in optimal control problems
We consider optimal control problems which consist in minimizing the $L^\infty$ norm of an output function under an isoperimetric or $L^1$ inequality. These problems typically arise in control applications when one looks to minimizing the maximum trajectory deviation or "peak" under a budg...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2024-04, Vol.69 (10), p.6967-6973. |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6973. |
---|---|
container_issue | 10 |
container_start_page | 6967 |
container_title | IEEE transactions on automatic control |
container_volume | 69 |
creator | Goreac, Dan Rapaport, Alain |
description | We consider optimal control problems which consist in minimizing the $L^\infty$ norm of an output function under an isoperimetric or $L^1$ inequality. These problems typically arise in control applications when one looks to minimizing the maximum trajectory deviation or "peak" under a budget constraint.We show a duality with more classical problems which amount to minimizing the $L^1$ cost under the state constraint given by an upper bound on the $L^\infty$ norm of the output.More precisely, we provide a result linking the value functions of these two problems, as functions of the levels of the two kind of constraints.This is obtained for initial conditions at which lower semi-continuity of the value functions can be guaranteed, and is completed with optimality considerations. When the duality holds, we show that the two problems have the same optimal controls.Furthermore, we provide structural assumptions on the dynamics under which the semi-continuity of the value functions can be established. We illustrate theses results on non-pharmaceutically controlled epidemics models under peak or budget restrictions. |
doi_str_mv | 10.1109/TAC.2024.3386097 |
format | Article |
fullrecord | <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04529463v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04529463v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_04529463v13</originalsourceid><addsrcrecordid>eNqVi7sOgjAARTtoIj52x64OQF9UOhKiYWBkb6pCrCmUtMWEvxcTf8Dp5pycC8ARowRjJNKmKBOCCEsozTkS5xWIEMJ5LEjON2Dr_WtBzhiOQFbroQtzWmP4mJTRYYau9ZMJHuoB2jHoXhl4t0Nw1sDR2Ztpe78H604Z3x5-uwOn66Upq_ipjBzd8nGztErLqqjl1yGWEcE4fWP6T_sBt149gw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Linfty/L1 duality results in optimal control problems</title><source>IEEE Electronic Library (IEL)</source><creator>Goreac, Dan ; Rapaport, Alain</creator><creatorcontrib>Goreac, Dan ; Rapaport, Alain</creatorcontrib><description>We consider optimal control problems which consist in minimizing the $L^\infty$ norm of an output function under an isoperimetric or $L^1$ inequality. These problems typically arise in control applications when one looks to minimizing the maximum trajectory deviation or "peak" under a budget constraint.We show a duality with more classical problems which amount to minimizing the $L^1$ cost under the state constraint given by an upper bound on the $L^\infty$ norm of the output.More precisely, we provide a result linking the value functions of these two problems, as functions of the levels of the two kind of constraints.This is obtained for initial conditions at which lower semi-continuity of the value functions can be guaranteed, and is completed with optimality considerations. When the duality holds, we show that the two problems have the same optimal controls.Furthermore, we provide structural assumptions on the dynamics under which the semi-continuity of the value functions can be established. We illustrate theses results on non-pharmaceutically controlled epidemics models under peak or budget restrictions.</description><identifier>ISSN: 0018-9286</identifier><identifier>DOI: 10.1109/TAC.2024.3386097</identifier><language>eng</language><publisher>Institute of Electrical and Electronics Engineers</publisher><subject>Mathematics ; Optimization and Control</subject><ispartof>IEEE transactions on automatic control, 2024-04, Vol.69 (10), p.6967-6973.</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8693-6672 ; 0000-0002-8515-0838 ; 0000-0002-8515-0838 ; 0000-0002-8693-6672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-04529463$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Goreac, Dan</creatorcontrib><creatorcontrib>Rapaport, Alain</creatorcontrib><title>Linfty/L1 duality results in optimal control problems</title><title>IEEE transactions on automatic control</title><description>We consider optimal control problems which consist in minimizing the $L^\infty$ norm of an output function under an isoperimetric or $L^1$ inequality. These problems typically arise in control applications when one looks to minimizing the maximum trajectory deviation or "peak" under a budget constraint.We show a duality with more classical problems which amount to minimizing the $L^1$ cost under the state constraint given by an upper bound on the $L^\infty$ norm of the output.More precisely, we provide a result linking the value functions of these two problems, as functions of the levels of the two kind of constraints.This is obtained for initial conditions at which lower semi-continuity of the value functions can be guaranteed, and is completed with optimality considerations. When the duality holds, we show that the two problems have the same optimal controls.Furthermore, we provide structural assumptions on the dynamics under which the semi-continuity of the value functions can be established. We illustrate theses results on non-pharmaceutically controlled epidemics models under peak or budget restrictions.</description><subject>Mathematics</subject><subject>Optimization and Control</subject><issn>0018-9286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVi7sOgjAARTtoIj52x64OQF9UOhKiYWBkb6pCrCmUtMWEvxcTf8Dp5pycC8ARowRjJNKmKBOCCEsozTkS5xWIEMJ5LEjON2Dr_WtBzhiOQFbroQtzWmP4mJTRYYau9ZMJHuoB2jHoXhl4t0Nw1sDR2Ztpe78H604Z3x5-uwOn66Upq_ipjBzd8nGztErLqqjl1yGWEcE4fWP6T_sBt149gw</recordid><startdate>20240408</startdate><enddate>20240408</enddate><creator>Goreac, Dan</creator><creator>Rapaport, Alain</creator><general>Institute of Electrical and Electronics Engineers</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8693-6672</orcidid><orcidid>https://orcid.org/0000-0002-8515-0838</orcidid><orcidid>https://orcid.org/0000-0002-8515-0838</orcidid><orcidid>https://orcid.org/0000-0002-8693-6672</orcidid></search><sort><creationdate>20240408</creationdate><title>Linfty/L1 duality results in optimal control problems</title><author>Goreac, Dan ; Rapaport, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_04529463v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematics</topic><topic>Optimization and Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goreac, Dan</creatorcontrib><creatorcontrib>Rapaport, Alain</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goreac, Dan</au><au>Rapaport, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linfty/L1 duality results in optimal control problems</atitle><jtitle>IEEE transactions on automatic control</jtitle><date>2024-04-08</date><risdate>2024</risdate><volume>69</volume><issue>10</issue><spage>6967</spage><epage>6973.</epage><pages>6967-6973.</pages><issn>0018-9286</issn><abstract>We consider optimal control problems which consist in minimizing the $L^\infty$ norm of an output function under an isoperimetric or $L^1$ inequality. These problems typically arise in control applications when one looks to minimizing the maximum trajectory deviation or "peak" under a budget constraint.We show a duality with more classical problems which amount to minimizing the $L^1$ cost under the state constraint given by an upper bound on the $L^\infty$ norm of the output.More precisely, we provide a result linking the value functions of these two problems, as functions of the levels of the two kind of constraints.This is obtained for initial conditions at which lower semi-continuity of the value functions can be guaranteed, and is completed with optimality considerations. When the duality holds, we show that the two problems have the same optimal controls.Furthermore, we provide structural assumptions on the dynamics under which the semi-continuity of the value functions can be established. We illustrate theses results on non-pharmaceutically controlled epidemics models under peak or budget restrictions.</abstract><pub>Institute of Electrical and Electronics Engineers</pub><doi>10.1109/TAC.2024.3386097</doi><orcidid>https://orcid.org/0000-0002-8693-6672</orcidid><orcidid>https://orcid.org/0000-0002-8515-0838</orcidid><orcidid>https://orcid.org/0000-0002-8515-0838</orcidid><orcidid>https://orcid.org/0000-0002-8693-6672</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2024-04, Vol.69 (10), p.6967-6973. |
issn | 0018-9286 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04529463v1 |
source | IEEE Electronic Library (IEL) |
subjects | Mathematics Optimization and Control |
title | Linfty/L1 duality results in optimal control problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linfty/L1%20duality%20results%20in%20optimal%20control%20problems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Goreac,%20Dan&rft.date=2024-04-08&rft.volume=69&rft.issue=10&rft.spage=6967&rft.epage=6973.&rft.pages=6967-6973.&rft.issn=0018-9286&rft_id=info:doi/10.1109/TAC.2024.3386097&rft_dat=%3Chal%3Eoai_HAL_hal_04529463v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |