Can GPU performance increase faster than the code error rate?
Graphics processing units (GPUs) are the reference architecture to accelerate high-performance computing applications and the training/interference of convolutional neural networks. For both these domains, performance and reliability are two of the main constraints. It is believed that the only way...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2024-08, Vol.80 (12), p.16918-16946 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16946 |
---|---|
container_issue | 12 |
container_start_page | 16918 |
container_title | The Journal of supercomputing |
container_volume | 80 |
creator | dos Santos, Fernando Fernandes Rech, Paolo |
description | Graphics processing units (GPUs) are the reference architecture to accelerate high-performance computing applications and the training/interference of convolutional neural networks. For both these domains, performance and reliability are two of the main constraints. It is believed that the only way to increase reliability is to sacrifice performance, e.g., using redundancies. We show in this paper that this is not always the case. As a very promising result, we found that most GPUs performance improvements also bring the benefit of increasing the number of executions correctly completed before experiencing a silent data corruption (SDC). We consider four different common GPUs’ performance optimizations: architectural solutions, software implementations, compiler optimizations, and threads degree of parallelism. We compare different implementations of a variety of parallel codes and, through beam experiments and applications profiling, we show that the performance improvement typically (but not necessarily) increases the GPU SDC rate. Nevertheless, for the vast majority of the configurations the performance gain is much higher than the SDC rate increase, allowing to process a higher amount of correct data. As we show, the programmer choices can increase up to
25
×
the number of correctly completed executions without redesigning the algorithm nor including specific hardening solutions. |
doi_str_mv | 10.1007/s11227-024-06119-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04528798v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3077092766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-e88e791096130ec6bde5fdb74fe8e0596acb3eb55fcdd97a069a5639938422963</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsv4CrgykX05j9ZiJSirVDQhV2HdOaObWlnajIVfHunjujOVeByvkM4hFxyuOEA9jZzLoRlIBQDw7ln6ogMuLaSgXLqmAzAC2BOK3FKznJeA4CSVg7I3TjWdPIypztMVZO2sS6QruoiYcxIq5hbTLRddlC7RFo0JVJMqUk0xRbvz8lJFTcZL37eIZk_PryOp2z2PHkaj2askMq1DJ1D6zl4wyVgYRYl6qpcWFWhQ9DexGIhcaF1VZSltxGMj9pI76VTQngjh-S69y7jJuzSahvTZ2jiKkxHs3C4gdLCWe8-eMde9ewuNe97zG1YN_tUd98LEqztQlhzMIqeKlKTc8LqV8shHJKGPmnokobvpEF1I9mPcgfXb5j-1P-svgANjXa7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3077092766</pqid></control><display><type>article</type><title>Can GPU performance increase faster than the code error rate?</title><source>SpringerLink Journals</source><creator>dos Santos, Fernando Fernandes ; Rech, Paolo</creator><creatorcontrib>dos Santos, Fernando Fernandes ; Rech, Paolo</creatorcontrib><description>Graphics processing units (GPUs) are the reference architecture to accelerate high-performance computing applications and the training/interference of convolutional neural networks. For both these domains, performance and reliability are two of the main constraints. It is believed that the only way to increase reliability is to sacrifice performance, e.g., using redundancies. We show in this paper that this is not always the case. As a very promising result, we found that most GPUs performance improvements also bring the benefit of increasing the number of executions correctly completed before experiencing a silent data corruption (SDC). We consider four different common GPUs’ performance optimizations: architectural solutions, software implementations, compiler optimizations, and threads degree of parallelism. We compare different implementations of a variety of parallel codes and, through beam experiments and applications profiling, we show that the performance improvement typically (but not necessarily) increases the GPU SDC rate. Nevertheless, for the vast majority of the configurations the performance gain is much higher than the SDC rate increase, allowing to process a higher amount of correct data. As we show, the programmer choices can increase up to
25
×
the number of correctly completed executions without redesigning the algorithm nor including specific hardening solutions.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-024-06119-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial neural networks ; Compilers ; Computer Science ; Configuration management ; Graphics processing units ; Hardware Architecture ; Interpreters ; Processor Architectures ; Programming Languages ; Reliability</subject><ispartof>The Journal of supercomputing, 2024-08, Vol.80 (12), p.16918-16946</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-e88e791096130ec6bde5fdb74fe8e0596acb3eb55fcdd97a069a5639938422963</cites><orcidid>0000-0002-0821-1879 ; 0000-0002-3504-9862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-024-06119-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-024-06119-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04528798$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>dos Santos, Fernando Fernandes</creatorcontrib><creatorcontrib>Rech, Paolo</creatorcontrib><title>Can GPU performance increase faster than the code error rate?</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Graphics processing units (GPUs) are the reference architecture to accelerate high-performance computing applications and the training/interference of convolutional neural networks. For both these domains, performance and reliability are two of the main constraints. It is believed that the only way to increase reliability is to sacrifice performance, e.g., using redundancies. We show in this paper that this is not always the case. As a very promising result, we found that most GPUs performance improvements also bring the benefit of increasing the number of executions correctly completed before experiencing a silent data corruption (SDC). We consider four different common GPUs’ performance optimizations: architectural solutions, software implementations, compiler optimizations, and threads degree of parallelism. We compare different implementations of a variety of parallel codes and, through beam experiments and applications profiling, we show that the performance improvement typically (but not necessarily) increases the GPU SDC rate. Nevertheless, for the vast majority of the configurations the performance gain is much higher than the SDC rate increase, allowing to process a higher amount of correct data. As we show, the programmer choices can increase up to
25
×
the number of correctly completed executions without redesigning the algorithm nor including specific hardening solutions.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Configuration management</subject><subject>Graphics processing units</subject><subject>Hardware Architecture</subject><subject>Interpreters</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Reliability</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM1KAzEURoMoWKsv4CrgykX05j9ZiJSirVDQhV2HdOaObWlnajIVfHunjujOVeByvkM4hFxyuOEA9jZzLoRlIBQDw7ln6ogMuLaSgXLqmAzAC2BOK3FKznJeA4CSVg7I3TjWdPIypztMVZO2sS6QruoiYcxIq5hbTLRddlC7RFo0JVJMqUk0xRbvz8lJFTcZL37eIZk_PryOp2z2PHkaj2askMq1DJ1D6zl4wyVgYRYl6qpcWFWhQ9DexGIhcaF1VZSltxGMj9pI76VTQngjh-S69y7jJuzSahvTZ2jiKkxHs3C4gdLCWe8-eMde9ewuNe97zG1YN_tUd98LEqztQlhzMIqeKlKTc8LqV8shHJKGPmnokobvpEF1I9mPcgfXb5j-1P-svgANjXa7</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>dos Santos, Fernando Fernandes</creator><creator>Rech, Paolo</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0821-1879</orcidid><orcidid>https://orcid.org/0000-0002-3504-9862</orcidid></search><sort><creationdate>20240801</creationdate><title>Can GPU performance increase faster than the code error rate?</title><author>dos Santos, Fernando Fernandes ; Rech, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-e88e791096130ec6bde5fdb74fe8e0596acb3eb55fcdd97a069a5639938422963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Configuration management</topic><topic>Graphics processing units</topic><topic>Hardware Architecture</topic><topic>Interpreters</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>dos Santos, Fernando Fernandes</creatorcontrib><creatorcontrib>Rech, Paolo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>dos Santos, Fernando Fernandes</au><au>Rech, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can GPU performance increase faster than the code error rate?</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>80</volume><issue>12</issue><spage>16918</spage><epage>16946</epage><pages>16918-16946</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Graphics processing units (GPUs) are the reference architecture to accelerate high-performance computing applications and the training/interference of convolutional neural networks. For both these domains, performance and reliability are two of the main constraints. It is believed that the only way to increase reliability is to sacrifice performance, e.g., using redundancies. We show in this paper that this is not always the case. As a very promising result, we found that most GPUs performance improvements also bring the benefit of increasing the number of executions correctly completed before experiencing a silent data corruption (SDC). We consider four different common GPUs’ performance optimizations: architectural solutions, software implementations, compiler optimizations, and threads degree of parallelism. We compare different implementations of a variety of parallel codes and, through beam experiments and applications profiling, we show that the performance improvement typically (but not necessarily) increases the GPU SDC rate. Nevertheless, for the vast majority of the configurations the performance gain is much higher than the SDC rate increase, allowing to process a higher amount of correct data. As we show, the programmer choices can increase up to
25
×
the number of correctly completed executions without redesigning the algorithm nor including specific hardening solutions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-024-06119-4</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-0821-1879</orcidid><orcidid>https://orcid.org/0000-0002-3504-9862</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2024-08, Vol.80 (12), p.16918-16946 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04528798v1 |
source | SpringerLink Journals |
subjects | Algorithms Artificial neural networks Compilers Computer Science Configuration management Graphics processing units Hardware Architecture Interpreters Processor Architectures Programming Languages Reliability |
title | Can GPU performance increase faster than the code error rate? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T03%3A19%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20GPU%20performance%20increase%20faster%20than%20the%20code%20error%20rate?&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=dos%20Santos,%20Fernando%20Fernandes&rft.date=2024-08-01&rft.volume=80&rft.issue=12&rft.spage=16918&rft.epage=16946&rft.pages=16918-16946&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-024-06119-4&rft_dat=%3Cproquest_hal_p%3E3077092766%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3077092766&rft_id=info:pmid/&rfr_iscdi=true |