Principle of virtual action in continuum mechanics

We present the principle of virtual action as a foundation of continuum mechanics. Used mainly in relativity, the method has a useful application in classical mechanics and places the notion of action as the basic concept of dynamics. The principle is an extension of virtual work to space-time. It e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ricerche di matematica 2024, Vol.73 (Suppl 1), p.217-232
1. Verfasser: Gouin, Henri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 232
container_issue Suppl 1
container_start_page 217
container_title Ricerche di matematica
container_volume 73
creator Gouin, Henri
description We present the principle of virtual action as a foundation of continuum mechanics. Used mainly in relativity, the method has a useful application in classical mechanics and places the notion of action as the basic concept of dynamics. The principle is an extension of virtual work to space-time. It extends the efforts made by d’Alembert and Lagrange. Unlike the classical case of equilibrium, the principle of virtual action becomes a postulate for the formulation of models in dynamics. It allows to use a minimal set of clear conjectures and is extended to the case of media with dissipation; it can be used for more complex systems.
doi_str_mv 10.1007/s11587-023-00785-x
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04525651v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2927855567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-c4f3b05ecca327f7cb7ecb2d46c3f5dabd19f06de841c9e973c7d6a05d1743893</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5giMTEYzl9xMlYVtEiVYIDZchyHukqdYidV-fe4BMHGdLrT8746PQhdE7gjAPI-EiIKiYEynNZC4MMJmpCCSsx4SU7RBIAJLIAV5-gixg0AlwL4BNGX4Lxxu9ZmXZPtXegH3Wba9K7zmfOZ6Xzv_DBss601a-2diZforNFttFc_c4reHh9e50u8el48zWcrbBjwHhvesAqENUYzKhtpKmlNRWueG9aIWlc1KRvIa1twYkpbSmZknWsQNZGcFSWbotuxd61btQtuq8On6rRTy9lKHW_ABRW5IHuS2JuR3YXuY7CxV5tuCD69p2hJkxAhcpkoOlImdDEG2_zWElBHj2r0qJJH9e1RHVKIjaGYYP9uw1_1P6kvi9J1Zw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927855567</pqid></control><display><type>article</type><title>Principle of virtual action in continuum mechanics</title><source>SpringerLink Journals</source><creator>Gouin, Henri</creator><creatorcontrib>Gouin, Henri</creatorcontrib><description>We present the principle of virtual action as a foundation of continuum mechanics. Used mainly in relativity, the method has a useful application in classical mechanics and places the notion of action as the basic concept of dynamics. The principle is an extension of virtual work to space-time. It extends the efforts made by d’Alembert and Lagrange. Unlike the classical case of equilibrium, the principle of virtual action becomes a postulate for the formulation of models in dynamics. It allows to use a minimal set of clear conjectures and is extended to the case of media with dissipation; it can be used for more complex systems.</description><identifier>ISSN: 0035-5038</identifier><identifier>EISSN: 1827-3491</identifier><identifier>DOI: 10.1007/s11587-023-00785-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Classical mechanics ; Complex systems ; Continuum mechanics ; Engineering Sciences ; Geometry ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Mechanics ; Numerical Analysis ; Physics ; Principles ; Probability Theory and Stochastic Processes ; Relativity</subject><ispartof>Ricerche di matematica, 2024, Vol.73 (Suppl 1), p.217-232</ispartof><rights>Università degli Studi di Napoli "Federico II" 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c304t-c4f3b05ecca327f7cb7ecb2d46c3f5dabd19f06de841c9e973c7d6a05d1743893</cites><orcidid>0000-0003-4088-1386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11587-023-00785-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11587-023-00785-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04525651$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gouin, Henri</creatorcontrib><title>Principle of virtual action in continuum mechanics</title><title>Ricerche di matematica</title><addtitle>Ricerche mat</addtitle><description>We present the principle of virtual action as a foundation of continuum mechanics. Used mainly in relativity, the method has a useful application in classical mechanics and places the notion of action as the basic concept of dynamics. The principle is an extension of virtual work to space-time. It extends the efforts made by d’Alembert and Lagrange. Unlike the classical case of equilibrium, the principle of virtual action becomes a postulate for the formulation of models in dynamics. It allows to use a minimal set of clear conjectures and is extended to the case of media with dissipation; it can be used for more complex systems.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Classical mechanics</subject><subject>Complex systems</subject><subject>Continuum mechanics</subject><subject>Engineering Sciences</subject><subject>Geometry</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanics</subject><subject>Numerical Analysis</subject><subject>Physics</subject><subject>Principles</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Relativity</subject><issn>0035-5038</issn><issn>1827-3491</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5giMTEYzl9xMlYVtEiVYIDZchyHukqdYidV-fe4BMHGdLrT8746PQhdE7gjAPI-EiIKiYEynNZC4MMJmpCCSsx4SU7RBIAJLIAV5-gixg0AlwL4BNGX4Lxxu9ZmXZPtXegH3Wba9K7zmfOZ6Xzv_DBss601a-2diZforNFttFc_c4reHh9e50u8el48zWcrbBjwHhvesAqENUYzKhtpKmlNRWueG9aIWlc1KRvIa1twYkpbSmZknWsQNZGcFSWbotuxd61btQtuq8On6rRTy9lKHW_ABRW5IHuS2JuR3YXuY7CxV5tuCD69p2hJkxAhcpkoOlImdDEG2_zWElBHj2r0qJJH9e1RHVKIjaGYYP9uw1_1P6kvi9J1Zw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Gouin, Henri</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4088-1386</orcidid></search><sort><creationdate>2024</creationdate><title>Principle of virtual action in continuum mechanics</title><author>Gouin, Henri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-c4f3b05ecca327f7cb7ecb2d46c3f5dabd19f06de841c9e973c7d6a05d1743893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Classical mechanics</topic><topic>Complex systems</topic><topic>Continuum mechanics</topic><topic>Engineering Sciences</topic><topic>Geometry</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanics</topic><topic>Numerical Analysis</topic><topic>Physics</topic><topic>Principles</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Relativity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gouin, Henri</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Ricerche di matematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gouin, Henri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Principle of virtual action in continuum mechanics</atitle><jtitle>Ricerche di matematica</jtitle><stitle>Ricerche mat</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><issue>Suppl 1</issue><spage>217</spage><epage>232</epage><pages>217-232</pages><issn>0035-5038</issn><eissn>1827-3491</eissn><abstract>We present the principle of virtual action as a foundation of continuum mechanics. Used mainly in relativity, the method has a useful application in classical mechanics and places the notion of action as the basic concept of dynamics. The principle is an extension of virtual work to space-time. It extends the efforts made by d’Alembert and Lagrange. Unlike the classical case of equilibrium, the principle of virtual action becomes a postulate for the formulation of models in dynamics. It allows to use a minimal set of clear conjectures and is extended to the case of media with dissipation; it can be used for more complex systems.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11587-023-00785-x</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4088-1386</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-5038
ispartof Ricerche di matematica, 2024, Vol.73 (Suppl 1), p.217-232
issn 0035-5038
1827-3491
language eng
recordid cdi_hal_primary_oai_HAL_hal_04525651v1
source SpringerLink Journals
subjects Algebra
Analysis
Classical mechanics
Complex systems
Continuum mechanics
Engineering Sciences
Geometry
Mathematical Physics
Mathematics
Mathematics and Statistics
Mechanics
Numerical Analysis
Physics
Principles
Probability Theory and Stochastic Processes
Relativity
title Principle of virtual action in continuum mechanics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Principle%20of%20virtual%20action%20in%20continuum%20mechanics&rft.jtitle=Ricerche%20di%20matematica&rft.au=Gouin,%20Henri&rft.date=2024&rft.volume=73&rft.issue=Suppl%201&rft.spage=217&rft.epage=232&rft.pages=217-232&rft.issn=0035-5038&rft.eissn=1827-3491&rft_id=info:doi/10.1007/s11587-023-00785-x&rft_dat=%3Cproquest_hal_p%3E2927855567%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2927855567&rft_id=info:pmid/&rfr_iscdi=true