Principle of virtual action in continuum mechanics
We present the principle of virtual action as a foundation of continuum mechanics. Used mainly in relativity, the method has a useful application in classical mechanics and places the notion of action as the basic concept of dynamics. The principle is an extension of virtual work to space-time. It e...
Gespeichert in:
Veröffentlicht in: | Ricerche di matematica 2024, Vol.73 (Suppl 1), p.217-232 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 232 |
---|---|
container_issue | Suppl 1 |
container_start_page | 217 |
container_title | Ricerche di matematica |
container_volume | 73 |
creator | Gouin, Henri |
description | We present the principle of virtual action as a foundation of continuum mechanics. Used mainly in relativity, the method has a useful application in classical mechanics and places the notion of action as the basic concept of dynamics. The principle is an extension of virtual work to space-time. It extends the efforts made by d’Alembert and Lagrange. Unlike the classical case of equilibrium, the principle of virtual action becomes a postulate for the formulation of models in dynamics. It allows to use a minimal set of clear conjectures and is extended to the case of media with dissipation; it can be used for more complex systems. |
doi_str_mv | 10.1007/s11587-023-00785-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04525651v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2927855567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-c4f3b05ecca327f7cb7ecb2d46c3f5dabd19f06de841c9e973c7d6a05d1743893</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5giMTEYzl9xMlYVtEiVYIDZchyHukqdYidV-fe4BMHGdLrT8746PQhdE7gjAPI-EiIKiYEynNZC4MMJmpCCSsx4SU7RBIAJLIAV5-gixg0AlwL4BNGX4Lxxu9ZmXZPtXegH3Wba9K7zmfOZ6Xzv_DBss601a-2diZforNFttFc_c4reHh9e50u8el48zWcrbBjwHhvesAqENUYzKhtpKmlNRWueG9aIWlc1KRvIa1twYkpbSmZknWsQNZGcFSWbotuxd61btQtuq8On6rRTy9lKHW_ABRW5IHuS2JuR3YXuY7CxV5tuCD69p2hJkxAhcpkoOlImdDEG2_zWElBHj2r0qJJH9e1RHVKIjaGYYP9uw1_1P6kvi9J1Zw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927855567</pqid></control><display><type>article</type><title>Principle of virtual action in continuum mechanics</title><source>SpringerLink Journals</source><creator>Gouin, Henri</creator><creatorcontrib>Gouin, Henri</creatorcontrib><description>We present the principle of virtual action as a foundation of continuum mechanics. Used mainly in relativity, the method has a useful application in classical mechanics and places the notion of action as the basic concept of dynamics. The principle is an extension of virtual work to space-time. It extends the efforts made by d’Alembert and Lagrange. Unlike the classical case of equilibrium, the principle of virtual action becomes a postulate for the formulation of models in dynamics. It allows to use a minimal set of clear conjectures and is extended to the case of media with dissipation; it can be used for more complex systems.</description><identifier>ISSN: 0035-5038</identifier><identifier>EISSN: 1827-3491</identifier><identifier>DOI: 10.1007/s11587-023-00785-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Classical mechanics ; Complex systems ; Continuum mechanics ; Engineering Sciences ; Geometry ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Mechanics ; Numerical Analysis ; Physics ; Principles ; Probability Theory and Stochastic Processes ; Relativity</subject><ispartof>Ricerche di matematica, 2024, Vol.73 (Suppl 1), p.217-232</ispartof><rights>Università degli Studi di Napoli "Federico II" 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c304t-c4f3b05ecca327f7cb7ecb2d46c3f5dabd19f06de841c9e973c7d6a05d1743893</cites><orcidid>0000-0003-4088-1386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11587-023-00785-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11587-023-00785-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04525651$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gouin, Henri</creatorcontrib><title>Principle of virtual action in continuum mechanics</title><title>Ricerche di matematica</title><addtitle>Ricerche mat</addtitle><description>We present the principle of virtual action as a foundation of continuum mechanics. Used mainly in relativity, the method has a useful application in classical mechanics and places the notion of action as the basic concept of dynamics. The principle is an extension of virtual work to space-time. It extends the efforts made by d’Alembert and Lagrange. Unlike the classical case of equilibrium, the principle of virtual action becomes a postulate for the formulation of models in dynamics. It allows to use a minimal set of clear conjectures and is extended to the case of media with dissipation; it can be used for more complex systems.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Classical mechanics</subject><subject>Complex systems</subject><subject>Continuum mechanics</subject><subject>Engineering Sciences</subject><subject>Geometry</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanics</subject><subject>Numerical Analysis</subject><subject>Physics</subject><subject>Principles</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Relativity</subject><issn>0035-5038</issn><issn>1827-3491</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5giMTEYzl9xMlYVtEiVYIDZchyHukqdYidV-fe4BMHGdLrT8746PQhdE7gjAPI-EiIKiYEynNZC4MMJmpCCSsx4SU7RBIAJLIAV5-gixg0AlwL4BNGX4Lxxu9ZmXZPtXegH3Wba9K7zmfOZ6Xzv_DBss601a-2diZforNFttFc_c4reHh9e50u8el48zWcrbBjwHhvesAqENUYzKhtpKmlNRWueG9aIWlc1KRvIa1twYkpbSmZknWsQNZGcFSWbotuxd61btQtuq8On6rRTy9lKHW_ABRW5IHuS2JuR3YXuY7CxV5tuCD69p2hJkxAhcpkoOlImdDEG2_zWElBHj2r0qJJH9e1RHVKIjaGYYP9uw1_1P6kvi9J1Zw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Gouin, Henri</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4088-1386</orcidid></search><sort><creationdate>2024</creationdate><title>Principle of virtual action in continuum mechanics</title><author>Gouin, Henri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-c4f3b05ecca327f7cb7ecb2d46c3f5dabd19f06de841c9e973c7d6a05d1743893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Classical mechanics</topic><topic>Complex systems</topic><topic>Continuum mechanics</topic><topic>Engineering Sciences</topic><topic>Geometry</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanics</topic><topic>Numerical Analysis</topic><topic>Physics</topic><topic>Principles</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Relativity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gouin, Henri</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Ricerche di matematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gouin, Henri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Principle of virtual action in continuum mechanics</atitle><jtitle>Ricerche di matematica</jtitle><stitle>Ricerche mat</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><issue>Suppl 1</issue><spage>217</spage><epage>232</epage><pages>217-232</pages><issn>0035-5038</issn><eissn>1827-3491</eissn><abstract>We present the principle of virtual action as a foundation of continuum mechanics. Used mainly in relativity, the method has a useful application in classical mechanics and places the notion of action as the basic concept of dynamics. The principle is an extension of virtual work to space-time. It extends the efforts made by d’Alembert and Lagrange. Unlike the classical case of equilibrium, the principle of virtual action becomes a postulate for the formulation of models in dynamics. It allows to use a minimal set of clear conjectures and is extended to the case of media with dissipation; it can be used for more complex systems.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11587-023-00785-x</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4088-1386</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-5038 |
ispartof | Ricerche di matematica, 2024, Vol.73 (Suppl 1), p.217-232 |
issn | 0035-5038 1827-3491 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04525651v1 |
source | SpringerLink Journals |
subjects | Algebra Analysis Classical mechanics Complex systems Continuum mechanics Engineering Sciences Geometry Mathematical Physics Mathematics Mathematics and Statistics Mechanics Numerical Analysis Physics Principles Probability Theory and Stochastic Processes Relativity |
title | Principle of virtual action in continuum mechanics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Principle%20of%20virtual%20action%20in%20continuum%20mechanics&rft.jtitle=Ricerche%20di%20matematica&rft.au=Gouin,%20Henri&rft.date=2024&rft.volume=73&rft.issue=Suppl%201&rft.spage=217&rft.epage=232&rft.pages=217-232&rft.issn=0035-5038&rft.eissn=1827-3491&rft_id=info:doi/10.1007/s11587-023-00785-x&rft_dat=%3Cproquest_hal_p%3E2927855567%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2927855567&rft_id=info:pmid/&rfr_iscdi=true |