Multi-objective design space exploration using explainable surrogate models
The surrogate model is an essential part of modern design optimization and exploration. In some cases, exploration of design space in multi-objective problems is important to reveal useful design insight and guidelines that will be useful for engineers. However, most surrogate models are black boxes...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2024-03, Vol.67 (3), p.38, Article 38 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 38 |
container_title | Structural and multidisciplinary optimization |
container_volume | 67 |
creator | Palar, Pramudita Satria Dwianto, Yohanes Bimo Zuhal, Lavi Rizki Morlier, Joseph Shimoyama, Koji Obayashi, Shigeru |
description | The surrogate model is an essential part of modern design optimization and exploration. In some cases, exploration of design space in multi-objective problems is important to reveal useful design insight and guidelines that will be useful for engineers. However, most surrogate models are black boxes, making interpretation difficult. This paper investigates the framework of explainable surrogate models using Shapley Additive Explanations (SHAP) to gain important design insight that helps users better understand the relationship between objective functions and design variables. We applied the explainable surrogate model framework to multi-objective design problems and performed a comparison with active subspaces and Sobol indices. Several techniques to extract design insight based on SHAP values are discussed: the averaged SHAP, the SHAP summary plot, the single- and bi-objective SHAP dependence plot, and the SHAP correlation matrix. Two aerodynamic design cases are selected to demonstrate the capability of explainable surrogate models: nine-variable inviscid and twenty-variable viscous transonic airfoil design. The findings indicate that SHAP provides more valuable insights than active subspaces and Sobol indices, particularly regarding the impact of individual design variables on the objectives. Consequently, SHAP can be employed in conjunction with active subspaces and Sobol indices to explore the input–output relationship in multi-objective design exploration comprehensively. |
doi_str_mv | 10.1007/s00158-024-03769-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04512428v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932785875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-b55d66eaa720bad443fed0ffaad994aa7fd7b1ef8c281767b14beb5c1c0bee603</originalsourceid><addsrcrecordid>eNp9kDFPwzAUhCMEEqXwB5giMTEEnhM7ccaqAoooYgGJzbKTl-AqjYOdVNBfj9ugsjG90-m709MFwSWBGwKQ3ToAwngEMY0gydI82h4FE5ISFhHK-fFBZ--nwZlzKwDgQPNJ8PQ8NL2OjFph0esNhiU6Xbeh62SBIX51jbGy16YNB6fbeu9I3UrVYOgGa00tewzXpsTGnQcnlWwcXvzeafB2f_c6X0TLl4fH-WwZFZSSPlKMlWmKUmYxKFlSmlRYQlVJWeY59XZVZopgxYuYkyz1mipUrCAFKMQUkmlwPfZ-yEZ0Vq-l_RZGarGYLcXOA8pITGO-IZ69GtnOms8BXS9WZrCtf0_EeRJnnPGMeSoeqcIa5yxWh1oCYjewGAcWfmCxH1hsfSgZQ87DbY32r_qf1A9t6IBH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932785875</pqid></control><display><type>article</type><title>Multi-objective design space exploration using explainable surrogate models</title><source>SpringerLink Journals</source><creator>Palar, Pramudita Satria ; Dwianto, Yohanes Bimo ; Zuhal, Lavi Rizki ; Morlier, Joseph ; Shimoyama, Koji ; Obayashi, Shigeru</creator><creatorcontrib>Palar, Pramudita Satria ; Dwianto, Yohanes Bimo ; Zuhal, Lavi Rizki ; Morlier, Joseph ; Shimoyama, Koji ; Obayashi, Shigeru</creatorcontrib><description>The surrogate model is an essential part of modern design optimization and exploration. In some cases, exploration of design space in multi-objective problems is important to reveal useful design insight and guidelines that will be useful for engineers. However, most surrogate models are black boxes, making interpretation difficult. This paper investigates the framework of explainable surrogate models using Shapley Additive Explanations (SHAP) to gain important design insight that helps users better understand the relationship between objective functions and design variables. We applied the explainable surrogate model framework to multi-objective design problems and performed a comparison with active subspaces and Sobol indices. Several techniques to extract design insight based on SHAP values are discussed: the averaged SHAP, the SHAP summary plot, the single- and bi-objective SHAP dependence plot, and the SHAP correlation matrix. Two aerodynamic design cases are selected to demonstrate the capability of explainable surrogate models: nine-variable inviscid and twenty-variable viscous transonic airfoil design. The findings indicate that SHAP provides more valuable insights than active subspaces and Sobol indices, particularly regarding the impact of individual design variables on the objectives. Consequently, SHAP can be employed in conjunction with active subspaces and Sobol indices to explore the input–output relationship in multi-objective design exploration comprehensively.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-024-03769-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computational Mathematics and Numerical Analysis ; Correlation analysis ; Design optimization ; Engineering ; Engineering Design ; Mechanics ; Mechanics of materials ; Physics ; Subspaces ; Theoretical and Applied Mechanics</subject><ispartof>Structural and multidisciplinary optimization, 2024-03, Vol.67 (3), p.38, Article 38</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-b55d66eaa720bad443fed0ffaad994aa7fd7b1ef8c281767b14beb5c1c0bee603</citedby><cites>FETCH-LOGICAL-c441t-b55d66eaa720bad443fed0ffaad994aa7fd7b1ef8c281767b14beb5c1c0bee603</cites><orcidid>0000-0002-1511-2086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-024-03769-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-024-03769-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04512428$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Palar, Pramudita Satria</creatorcontrib><creatorcontrib>Dwianto, Yohanes Bimo</creatorcontrib><creatorcontrib>Zuhal, Lavi Rizki</creatorcontrib><creatorcontrib>Morlier, Joseph</creatorcontrib><creatorcontrib>Shimoyama, Koji</creatorcontrib><creatorcontrib>Obayashi, Shigeru</creatorcontrib><title>Multi-objective design space exploration using explainable surrogate models</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>The surrogate model is an essential part of modern design optimization and exploration. In some cases, exploration of design space in multi-objective problems is important to reveal useful design insight and guidelines that will be useful for engineers. However, most surrogate models are black boxes, making interpretation difficult. This paper investigates the framework of explainable surrogate models using Shapley Additive Explanations (SHAP) to gain important design insight that helps users better understand the relationship between objective functions and design variables. We applied the explainable surrogate model framework to multi-objective design problems and performed a comparison with active subspaces and Sobol indices. Several techniques to extract design insight based on SHAP values are discussed: the averaged SHAP, the SHAP summary plot, the single- and bi-objective SHAP dependence plot, and the SHAP correlation matrix. Two aerodynamic design cases are selected to demonstrate the capability of explainable surrogate models: nine-variable inviscid and twenty-variable viscous transonic airfoil design. The findings indicate that SHAP provides more valuable insights than active subspaces and Sobol indices, particularly regarding the impact of individual design variables on the objectives. Consequently, SHAP can be employed in conjunction with active subspaces and Sobol indices to explore the input–output relationship in multi-objective design exploration comprehensively.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Correlation analysis</subject><subject>Design optimization</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Physics</subject><subject>Subspaces</subject><subject>Theoretical and Applied Mechanics</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAUhCMEEqXwB5giMTEEnhM7ccaqAoooYgGJzbKTl-AqjYOdVNBfj9ugsjG90-m709MFwSWBGwKQ3ToAwngEMY0gydI82h4FE5ISFhHK-fFBZ--nwZlzKwDgQPNJ8PQ8NL2OjFph0esNhiU6Xbeh62SBIX51jbGy16YNB6fbeu9I3UrVYOgGa00tewzXpsTGnQcnlWwcXvzeafB2f_c6X0TLl4fH-WwZFZSSPlKMlWmKUmYxKFlSmlRYQlVJWeY59XZVZopgxYuYkyz1mipUrCAFKMQUkmlwPfZ-yEZ0Vq-l_RZGarGYLcXOA8pITGO-IZ69GtnOms8BXS9WZrCtf0_EeRJnnPGMeSoeqcIa5yxWh1oCYjewGAcWfmCxH1hsfSgZQ87DbY32r_qf1A9t6IBH</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Palar, Pramudita Satria</creator><creator>Dwianto, Yohanes Bimo</creator><creator>Zuhal, Lavi Rizki</creator><creator>Morlier, Joseph</creator><creator>Shimoyama, Koji</creator><creator>Obayashi, Shigeru</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1511-2086</orcidid></search><sort><creationdate>20240301</creationdate><title>Multi-objective design space exploration using explainable surrogate models</title><author>Palar, Pramudita Satria ; Dwianto, Yohanes Bimo ; Zuhal, Lavi Rizki ; Morlier, Joseph ; Shimoyama, Koji ; Obayashi, Shigeru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-b55d66eaa720bad443fed0ffaad994aa7fd7b1ef8c281767b14beb5c1c0bee603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Correlation analysis</topic><topic>Design optimization</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Physics</topic><topic>Subspaces</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palar, Pramudita Satria</creatorcontrib><creatorcontrib>Dwianto, Yohanes Bimo</creatorcontrib><creatorcontrib>Zuhal, Lavi Rizki</creatorcontrib><creatorcontrib>Morlier, Joseph</creatorcontrib><creatorcontrib>Shimoyama, Koji</creatorcontrib><creatorcontrib>Obayashi, Shigeru</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palar, Pramudita Satria</au><au>Dwianto, Yohanes Bimo</au><au>Zuhal, Lavi Rizki</au><au>Morlier, Joseph</au><au>Shimoyama, Koji</au><au>Obayashi, Shigeru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-objective design space exploration using explainable surrogate models</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>67</volume><issue>3</issue><spage>38</spage><pages>38-</pages><artnum>38</artnum><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>The surrogate model is an essential part of modern design optimization and exploration. In some cases, exploration of design space in multi-objective problems is important to reveal useful design insight and guidelines that will be useful for engineers. However, most surrogate models are black boxes, making interpretation difficult. This paper investigates the framework of explainable surrogate models using Shapley Additive Explanations (SHAP) to gain important design insight that helps users better understand the relationship between objective functions and design variables. We applied the explainable surrogate model framework to multi-objective design problems and performed a comparison with active subspaces and Sobol indices. Several techniques to extract design insight based on SHAP values are discussed: the averaged SHAP, the SHAP summary plot, the single- and bi-objective SHAP dependence plot, and the SHAP correlation matrix. Two aerodynamic design cases are selected to demonstrate the capability of explainable surrogate models: nine-variable inviscid and twenty-variable viscous transonic airfoil design. The findings indicate that SHAP provides more valuable insights than active subspaces and Sobol indices, particularly regarding the impact of individual design variables on the objectives. Consequently, SHAP can be employed in conjunction with active subspaces and Sobol indices to explore the input–output relationship in multi-objective design exploration comprehensively.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-024-03769-z</doi><orcidid>https://orcid.org/0000-0002-1511-2086</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2024-03, Vol.67 (3), p.38, Article 38 |
issn | 1615-147X 1615-1488 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04512428v1 |
source | SpringerLink Journals |
subjects | Computational Mathematics and Numerical Analysis Correlation analysis Design optimization Engineering Engineering Design Mechanics Mechanics of materials Physics Subspaces Theoretical and Applied Mechanics |
title | Multi-objective design space exploration using explainable surrogate models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A00%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-objective%20design%20space%20exploration%20using%20explainable%20surrogate%20models&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Palar,%20Pramudita%20Satria&rft.date=2024-03-01&rft.volume=67&rft.issue=3&rft.spage=38&rft.pages=38-&rft.artnum=38&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-024-03769-z&rft_dat=%3Cproquest_hal_p%3E2932785875%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932785875&rft_id=info:pmid/&rfr_iscdi=true |