Lithium ion battery electrode manufacturing model accounting for 3D realistic shapes of active material particles
The demand for lithium ion batteries (LIBs) in the market has gradually risen, with production increasing and expected to be boosted through the massive emergence of gigafactories. To meet industrial needs, the development of digital twins designed to accelerate the optimization of LIB manufacturing...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2023-01, Vol.554, p.232294, Article 232294 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 232294 |
container_title | Journal of power sources |
container_volume | 554 |
creator | Xu, Jiahui Ngandjong, Alain C. Liu, Chaoyue Zanotto, Franco M. Arcelus, Oier Demortière, Arnaud Franco, Alejandro A. |
description | The demand for lithium ion batteries (LIBs) in the market has gradually risen, with production increasing and expected to be boosted through the massive emergence of gigafactories. To meet industrial needs, the development of digital twins designed to accelerate the optimization of LIB manufacturing processes is essential. We report here a new three-dimensional physics-based modeling workflow able to predict the influence of manufacturing parameters on the electrode microstructure. This novel modeling workflow accounts for real active material particle shapes obtained from X-ray micro-computed tomography, upgrading our previous models where the particles were considered to be spherical. The modeling workflow is supported on Coarse-Grained Molecular Dynamics simulating the slurry, its drying and the calendering of the electrode resulting from the drying simulation. This model enables to link the manufacturing parameters with the real microstructure of the electrodes and to better observe the effect of the former on the heterogeneity of the electrodes. By using as user case electrodes containing LiNi0.33Co0.33Mn0.33O2 as active material, the simulations allow us, among others, to observe the alteration of the electrode heterogeneity during the manufacturing process and the deformation of the secondary particles of active material.
[Display omitted]
•Model for electrode manufacturing accounts for real particle shapes.•Particle shapes are extracted from X-ray computed tomography of real electrodes.•Deformation and rotation of particles is observed upon calendering.•Electrode tortuosity is better described with real particle shapes than with spheres. |
doi_str_mv | 10.1016/j.jpowsour.2022.232294 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04511228v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037877532201271X</els_id><sourcerecordid>oai_HAL_hal_04511228v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-ba8803b3dc4013dcb6ccd77bac056003f130b938edb141e681afe965f1f13fa93</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BcnWRWsebdPuHMbHCAU3ug5pmjgpbTMm6Yj_3pSqWzf3wrnnHLgfANcYpRjh4rZLu4P99HZyKUGEpIQSUmUnYIVLRhPC8vwUrBBlZcJYTs_BhfcdQghjhlbgozZhb6YBGjvCRoSg3BdUvZLB2VbBQYyTFjJMzozvcIhSD4WUdhrDLGjrIL2HTone-GAk9HtxUB5aHV3BHOeC2GhEDw_CRUOv_CU406L36upnr8Hb48PrdpfUL0_P202dSFplIWlEWSLa0FZmCMfZFFK2jDVCorxAiGpMUVPRUrUNzrAqSiy0qopc43jRoqJrcLP07kXPD84Mwn1xKwzfbWo-ayjLMSakPOLoLRavdNZ7p_RfACM-Q-Yd_4XMZ8h8gRyDd0tQxU-ORjnupVGjVK1xkSFvrfmv4huW9Iu5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lithium ion battery electrode manufacturing model accounting for 3D realistic shapes of active material particles</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Xu, Jiahui ; Ngandjong, Alain C. ; Liu, Chaoyue ; Zanotto, Franco M. ; Arcelus, Oier ; Demortière, Arnaud ; Franco, Alejandro A.</creator><creatorcontrib>Xu, Jiahui ; Ngandjong, Alain C. ; Liu, Chaoyue ; Zanotto, Franco M. ; Arcelus, Oier ; Demortière, Arnaud ; Franco, Alejandro A.</creatorcontrib><description>The demand for lithium ion batteries (LIBs) in the market has gradually risen, with production increasing and expected to be boosted through the massive emergence of gigafactories. To meet industrial needs, the development of digital twins designed to accelerate the optimization of LIB manufacturing processes is essential. We report here a new three-dimensional physics-based modeling workflow able to predict the influence of manufacturing parameters on the electrode microstructure. This novel modeling workflow accounts for real active material particle shapes obtained from X-ray micro-computed tomography, upgrading our previous models where the particles were considered to be spherical. The modeling workflow is supported on Coarse-Grained Molecular Dynamics simulating the slurry, its drying and the calendering of the electrode resulting from the drying simulation. This model enables to link the manufacturing parameters with the real microstructure of the electrodes and to better observe the effect of the former on the heterogeneity of the electrodes. By using as user case electrodes containing LiNi0.33Co0.33Mn0.33O2 as active material, the simulations allow us, among others, to observe the alteration of the electrode heterogeneity during the manufacturing process and the deformation of the secondary particles of active material.
[Display omitted]
•Model for electrode manufacturing accounts for real particle shapes.•Particle shapes are extracted from X-ray computed tomography of real electrodes.•Deformation and rotation of particles is observed upon calendering.•Electrode tortuosity is better described with real particle shapes than with spheres.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2022.232294</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Chemical Sciences ; Computational modeling ; Digital twin ; Electrode manufacturing ; Lithium ion battery ; Material chemistry</subject><ispartof>Journal of power sources, 2023-01, Vol.554, p.232294, Article 232294</ispartof><rights>2022 The Authors</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-ba8803b3dc4013dcb6ccd77bac056003f130b938edb141e681afe965f1f13fa93</citedby><cites>FETCH-LOGICAL-c394t-ba8803b3dc4013dcb6ccd77bac056003f130b938edb141e681afe965f1f13fa93</cites><orcidid>0000-0001-9075-3820 ; 0000-0001-7362-7849 ; 0000-0002-1459-5688 ; 0000-0002-4706-4592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2022.232294$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://u-picardie.hal.science/hal-04511228$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Jiahui</creatorcontrib><creatorcontrib>Ngandjong, Alain C.</creatorcontrib><creatorcontrib>Liu, Chaoyue</creatorcontrib><creatorcontrib>Zanotto, Franco M.</creatorcontrib><creatorcontrib>Arcelus, Oier</creatorcontrib><creatorcontrib>Demortière, Arnaud</creatorcontrib><creatorcontrib>Franco, Alejandro A.</creatorcontrib><title>Lithium ion battery electrode manufacturing model accounting for 3D realistic shapes of active material particles</title><title>Journal of power sources</title><description>The demand for lithium ion batteries (LIBs) in the market has gradually risen, with production increasing and expected to be boosted through the massive emergence of gigafactories. To meet industrial needs, the development of digital twins designed to accelerate the optimization of LIB manufacturing processes is essential. We report here a new three-dimensional physics-based modeling workflow able to predict the influence of manufacturing parameters on the electrode microstructure. This novel modeling workflow accounts for real active material particle shapes obtained from X-ray micro-computed tomography, upgrading our previous models where the particles were considered to be spherical. The modeling workflow is supported on Coarse-Grained Molecular Dynamics simulating the slurry, its drying and the calendering of the electrode resulting from the drying simulation. This model enables to link the manufacturing parameters with the real microstructure of the electrodes and to better observe the effect of the former on the heterogeneity of the electrodes. By using as user case electrodes containing LiNi0.33Co0.33Mn0.33O2 as active material, the simulations allow us, among others, to observe the alteration of the electrode heterogeneity during the manufacturing process and the deformation of the secondary particles of active material.
[Display omitted]
•Model for electrode manufacturing accounts for real particle shapes.•Particle shapes are extracted from X-ray computed tomography of real electrodes.•Deformation and rotation of particles is observed upon calendering.•Electrode tortuosity is better described with real particle shapes than with spheres.</description><subject>Chemical Sciences</subject><subject>Computational modeling</subject><subject>Digital twin</subject><subject>Electrode manufacturing</subject><subject>Lithium ion battery</subject><subject>Material chemistry</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BcnWRWsebdPuHMbHCAU3ug5pmjgpbTMm6Yj_3pSqWzf3wrnnHLgfANcYpRjh4rZLu4P99HZyKUGEpIQSUmUnYIVLRhPC8vwUrBBlZcJYTs_BhfcdQghjhlbgozZhb6YBGjvCRoSg3BdUvZLB2VbBQYyTFjJMzozvcIhSD4WUdhrDLGjrIL2HTone-GAk9HtxUB5aHV3BHOeC2GhEDw_CRUOv_CU406L36upnr8Hb48PrdpfUL0_P202dSFplIWlEWSLa0FZmCMfZFFK2jDVCorxAiGpMUVPRUrUNzrAqSiy0qopc43jRoqJrcLP07kXPD84Mwn1xKwzfbWo-ayjLMSakPOLoLRavdNZ7p_RfACM-Q-Yd_4XMZ8h8gRyDd0tQxU-ORjnupVGjVK1xkSFvrfmv4huW9Iu5</recordid><startdate>20230115</startdate><enddate>20230115</enddate><creator>Xu, Jiahui</creator><creator>Ngandjong, Alain C.</creator><creator>Liu, Chaoyue</creator><creator>Zanotto, Franco M.</creator><creator>Arcelus, Oier</creator><creator>Demortière, Arnaud</creator><creator>Franco, Alejandro A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9075-3820</orcidid><orcidid>https://orcid.org/0000-0001-7362-7849</orcidid><orcidid>https://orcid.org/0000-0002-1459-5688</orcidid><orcidid>https://orcid.org/0000-0002-4706-4592</orcidid></search><sort><creationdate>20230115</creationdate><title>Lithium ion battery electrode manufacturing model accounting for 3D realistic shapes of active material particles</title><author>Xu, Jiahui ; Ngandjong, Alain C. ; Liu, Chaoyue ; Zanotto, Franco M. ; Arcelus, Oier ; Demortière, Arnaud ; Franco, Alejandro A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-ba8803b3dc4013dcb6ccd77bac056003f130b938edb141e681afe965f1f13fa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical Sciences</topic><topic>Computational modeling</topic><topic>Digital twin</topic><topic>Electrode manufacturing</topic><topic>Lithium ion battery</topic><topic>Material chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jiahui</creatorcontrib><creatorcontrib>Ngandjong, Alain C.</creatorcontrib><creatorcontrib>Liu, Chaoyue</creatorcontrib><creatorcontrib>Zanotto, Franco M.</creatorcontrib><creatorcontrib>Arcelus, Oier</creatorcontrib><creatorcontrib>Demortière, Arnaud</creatorcontrib><creatorcontrib>Franco, Alejandro A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jiahui</au><au>Ngandjong, Alain C.</au><au>Liu, Chaoyue</au><au>Zanotto, Franco M.</au><au>Arcelus, Oier</au><au>Demortière, Arnaud</au><au>Franco, Alejandro A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium ion battery electrode manufacturing model accounting for 3D realistic shapes of active material particles</atitle><jtitle>Journal of power sources</jtitle><date>2023-01-15</date><risdate>2023</risdate><volume>554</volume><spage>232294</spage><pages>232294-</pages><artnum>232294</artnum><issn>0378-7753</issn><eissn>1873-2755</eissn><abstract>The demand for lithium ion batteries (LIBs) in the market has gradually risen, with production increasing and expected to be boosted through the massive emergence of gigafactories. To meet industrial needs, the development of digital twins designed to accelerate the optimization of LIB manufacturing processes is essential. We report here a new three-dimensional physics-based modeling workflow able to predict the influence of manufacturing parameters on the electrode microstructure. This novel modeling workflow accounts for real active material particle shapes obtained from X-ray micro-computed tomography, upgrading our previous models where the particles were considered to be spherical. The modeling workflow is supported on Coarse-Grained Molecular Dynamics simulating the slurry, its drying and the calendering of the electrode resulting from the drying simulation. This model enables to link the manufacturing parameters with the real microstructure of the electrodes and to better observe the effect of the former on the heterogeneity of the electrodes. By using as user case electrodes containing LiNi0.33Co0.33Mn0.33O2 as active material, the simulations allow us, among others, to observe the alteration of the electrode heterogeneity during the manufacturing process and the deformation of the secondary particles of active material.
[Display omitted]
•Model for electrode manufacturing accounts for real particle shapes.•Particle shapes are extracted from X-ray computed tomography of real electrodes.•Deformation and rotation of particles is observed upon calendering.•Electrode tortuosity is better described with real particle shapes than with spheres.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2022.232294</doi><orcidid>https://orcid.org/0000-0001-9075-3820</orcidid><orcidid>https://orcid.org/0000-0001-7362-7849</orcidid><orcidid>https://orcid.org/0000-0002-1459-5688</orcidid><orcidid>https://orcid.org/0000-0002-4706-4592</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2023-01, Vol.554, p.232294, Article 232294 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04511228v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Chemical Sciences Computational modeling Digital twin Electrode manufacturing Lithium ion battery Material chemistry |
title | Lithium ion battery electrode manufacturing model accounting for 3D realistic shapes of active material particles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A52%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium%20ion%20battery%20electrode%20manufacturing%20model%20accounting%20for%203D%20realistic%20shapes%20of%20active%20material%20particles&rft.jtitle=Journal%20of%20power%20sources&rft.au=Xu,%20Jiahui&rft.date=2023-01-15&rft.volume=554&rft.spage=232294&rft.pages=232294-&rft.artnum=232294&rft.issn=0378-7753&rft.eissn=1873-2755&rft_id=info:doi/10.1016/j.jpowsour.2022.232294&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04511228v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S037877532201271X&rfr_iscdi=true |