Finishing and quality of mechanically brushed 316L stainless steel welded joints using MIG process: hardness modeling by L9 TAGUCHI design
The present work aims to optimize the mechanical brush finishing of Metal Inert Gas (MIG) welded joints on AISI316L thin steel sheet. The innovative methodology is based on the experimental design methodology of the Taguchi design (L9) and the analysis of variance (ANOVA) with objective function of...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2019-11, Vol.105 (1-4), p.1009-1022 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1022 |
---|---|
container_issue | 1-4 |
container_start_page | 1009 |
container_title | International journal of advanced manufacturing technology |
container_volume | 105 |
creator | Guizani, Hichem Ben Nasser, Mohamed Tlili, Brahim Oueslati, Abdelbacet Chafra, Moez |
description | The present work aims to optimize the mechanical brush finishing of Metal Inert Gas (MIG) welded joints on AISI316L thin steel sheet. The innovative methodology is based on the experimental design methodology of the Taguchi design (L9) and the analysis of variance (ANOVA) with objective function of microhardness in brushed layers. A “Signal to Noise” approach is adopted with the objective of “Large is Better”. The speed of rotation of the brush, the speed of advance of the sample, the number of brushing passes, and the depression ratio of the brush fibers are the four three-level factors of the L9 design. The study of the effects of these factors showed the major influence of the depression and the number of passes on the magnitude of hardening of the brushed layers in the various zones of the weld. Minor interactions, found in the regression model, are noted between the different factors. Measurements of microhardness in the depths of each zone reveal distinct cure rates from one zone to another. The melted zone of the weld undergone the minimum hardening, unlike the heat affected zone (HAZ), whose microhardness contribution reaches 30% compared with the non-brushed welded sample. It is revealed that the main results lie in the microhardness contribution, of the order of 30% at the joint, while keeping the same level of magnitude of the mechanical strength using the optimal parameters. |
doi_str_mv | 10.1007/s00170-019-04249-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04508701v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2278322837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-dc020a9599cca41607abd417bbe2d21bfefd69b7acc081b3a4310fb22b08ad8e3</originalsourceid><addsrcrecordid>eNp9kU1u2zAQhYmgBeKmvUBWBLLqQs2QlEWqO8NobAMquknWBP9k0aCpRJRa-Ao9dakqaHdZkeD75s0MH0K3BL4QAH6fAAiHAkhdQEnLuiBXaEVKxgoGZP0OrYBWomC8EtfoQ0qnjFekEiv0-8FHnzofj1hFi18mFfx4wX2Lz850KnqjQrhgPUypcxYzUjU4jcrH4FLKN-cC_uWCzdqp93FMeEqz2ffDDj8PvcnUV9ypwcaZP_fWhVnWF9zU-HGze9ruD9i65I_xI3rfqpDcp9fzBj09fHvc7ovmx-6w3TSFYYKMhTVAQdXrujZGlaQCrrQtCdfaUUuJbl1rq1pzZQwIopkqGYFWU6pBKCscu0GfF99OBfk8-LMaLrJXXu43jZzfoFyD4EB-kszeLWze5WVyaZSnfhpiHk_mXwZRVpyJNynKBaNUMJ4pulBm6FMaXPuvOQE5pyiXFGVOUf5NUc4DsKUoZTge3fDf-o2qP0tLnuo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2278322837</pqid></control><display><type>article</type><title>Finishing and quality of mechanically brushed 316L stainless steel welded joints using MIG process: hardness modeling by L9 TAGUCHI design</title><source>SpringerLink Journals</source><creator>Guizani, Hichem ; Ben Nasser, Mohamed ; Tlili, Brahim ; Oueslati, Abdelbacet ; Chafra, Moez</creator><creatorcontrib>Guizani, Hichem ; Ben Nasser, Mohamed ; Tlili, Brahim ; Oueslati, Abdelbacet ; Chafra, Moez</creatorcontrib><description>The present work aims to optimize the mechanical brush finishing of Metal Inert Gas (MIG) welded joints on AISI316L thin steel sheet. The innovative methodology is based on the experimental design methodology of the Taguchi design (L9) and the analysis of variance (ANOVA) with objective function of microhardness in brushed layers. A “Signal to Noise” approach is adopted with the objective of “Large is Better”. The speed of rotation of the brush, the speed of advance of the sample, the number of brushing passes, and the depression ratio of the brush fibers are the four three-level factors of the L9 design. The study of the effects of these factors showed the major influence of the depression and the number of passes on the magnitude of hardening of the brushed layers in the various zones of the weld. Minor interactions, found in the regression model, are noted between the different factors. Measurements of microhardness in the depths of each zone reveal distinct cure rates from one zone to another. The melted zone of the weld undergone the minimum hardening, unlike the heat affected zone (HAZ), whose microhardness contribution reaches 30% compared with the non-brushed welded sample. It is revealed that the main results lie in the microhardness contribution, of the order of 30% at the joint, while keeping the same level of magnitude of the mechanical strength using the optimal parameters.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-019-04249-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Austenitic stainless steels ; Brushing ; CAE) and Design ; Computer-Aided Engineering (CAD ; Design of experiments ; Design optimization ; Engineering ; Engineering Sciences ; Hardening ; Heat affected zone ; Industrial and Production Engineering ; Mechanical Engineering ; Mechanics ; Media Management ; Metal sheets ; Microhardness ; Original Article ; Rare gases ; Regression analysis ; Regression models ; Taguchi methods ; Variance analysis ; Welded joints</subject><ispartof>International journal of advanced manufacturing technology, 2019-11, Vol.105 (1-4), p.1009-1022</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2019.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-dc020a9599cca41607abd417bbe2d21bfefd69b7acc081b3a4310fb22b08ad8e3</citedby><cites>FETCH-LOGICAL-c381t-dc020a9599cca41607abd417bbe2d21bfefd69b7acc081b3a4310fb22b08ad8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-019-04249-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-019-04249-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04508701$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guizani, Hichem</creatorcontrib><creatorcontrib>Ben Nasser, Mohamed</creatorcontrib><creatorcontrib>Tlili, Brahim</creatorcontrib><creatorcontrib>Oueslati, Abdelbacet</creatorcontrib><creatorcontrib>Chafra, Moez</creatorcontrib><title>Finishing and quality of mechanically brushed 316L stainless steel welded joints using MIG process: hardness modeling by L9 TAGUCHI design</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The present work aims to optimize the mechanical brush finishing of Metal Inert Gas (MIG) welded joints on AISI316L thin steel sheet. The innovative methodology is based on the experimental design methodology of the Taguchi design (L9) and the analysis of variance (ANOVA) with objective function of microhardness in brushed layers. A “Signal to Noise” approach is adopted with the objective of “Large is Better”. The speed of rotation of the brush, the speed of advance of the sample, the number of brushing passes, and the depression ratio of the brush fibers are the four three-level factors of the L9 design. The study of the effects of these factors showed the major influence of the depression and the number of passes on the magnitude of hardening of the brushed layers in the various zones of the weld. Minor interactions, found in the regression model, are noted between the different factors. Measurements of microhardness in the depths of each zone reveal distinct cure rates from one zone to another. The melted zone of the weld undergone the minimum hardening, unlike the heat affected zone (HAZ), whose microhardness contribution reaches 30% compared with the non-brushed welded sample. It is revealed that the main results lie in the microhardness contribution, of the order of 30% at the joint, while keeping the same level of magnitude of the mechanical strength using the optimal parameters.</description><subject>Austenitic stainless steels</subject><subject>Brushing</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Design of experiments</subject><subject>Design optimization</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Hardening</subject><subject>Heat affected zone</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Mechanics</subject><subject>Media Management</subject><subject>Metal sheets</subject><subject>Microhardness</subject><subject>Original Article</subject><subject>Rare gases</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Taguchi methods</subject><subject>Variance analysis</subject><subject>Welded joints</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1u2zAQhYmgBeKmvUBWBLLqQs2QlEWqO8NobAMquknWBP9k0aCpRJRa-Ao9dakqaHdZkeD75s0MH0K3BL4QAH6fAAiHAkhdQEnLuiBXaEVKxgoGZP0OrYBWomC8EtfoQ0qnjFekEiv0-8FHnzofj1hFi18mFfx4wX2Lz850KnqjQrhgPUypcxYzUjU4jcrH4FLKN-cC_uWCzdqp93FMeEqz2ffDDj8PvcnUV9ypwcaZP_fWhVnWF9zU-HGze9ruD9i65I_xI3rfqpDcp9fzBj09fHvc7ovmx-6w3TSFYYKMhTVAQdXrujZGlaQCrrQtCdfaUUuJbl1rq1pzZQwIopkqGYFWU6pBKCscu0GfF99OBfk8-LMaLrJXXu43jZzfoFyD4EB-kszeLWze5WVyaZSnfhpiHk_mXwZRVpyJNynKBaNUMJ4pulBm6FMaXPuvOQE5pyiXFGVOUf5NUc4DsKUoZTge3fDf-o2qP0tLnuo</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Guizani, Hichem</creator><creator>Ben Nasser, Mohamed</creator><creator>Tlili, Brahim</creator><creator>Oueslati, Abdelbacet</creator><creator>Chafra, Moez</creator><general>Springer London</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope></search><sort><creationdate>20191101</creationdate><title>Finishing and quality of mechanically brushed 316L stainless steel welded joints using MIG process: hardness modeling by L9 TAGUCHI design</title><author>Guizani, Hichem ; Ben Nasser, Mohamed ; Tlili, Brahim ; Oueslati, Abdelbacet ; Chafra, Moez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-dc020a9599cca41607abd417bbe2d21bfefd69b7acc081b3a4310fb22b08ad8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Austenitic stainless steels</topic><topic>Brushing</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Design of experiments</topic><topic>Design optimization</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Hardening</topic><topic>Heat affected zone</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Mechanics</topic><topic>Media Management</topic><topic>Metal sheets</topic><topic>Microhardness</topic><topic>Original Article</topic><topic>Rare gases</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Taguchi methods</topic><topic>Variance analysis</topic><topic>Welded joints</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guizani, Hichem</creatorcontrib><creatorcontrib>Ben Nasser, Mohamed</creatorcontrib><creatorcontrib>Tlili, Brahim</creatorcontrib><creatorcontrib>Oueslati, Abdelbacet</creatorcontrib><creatorcontrib>Chafra, Moez</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guizani, Hichem</au><au>Ben Nasser, Mohamed</au><au>Tlili, Brahim</au><au>Oueslati, Abdelbacet</au><au>Chafra, Moez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finishing and quality of mechanically brushed 316L stainless steel welded joints using MIG process: hardness modeling by L9 TAGUCHI design</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>105</volume><issue>1-4</issue><spage>1009</spage><epage>1022</epage><pages>1009-1022</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The present work aims to optimize the mechanical brush finishing of Metal Inert Gas (MIG) welded joints on AISI316L thin steel sheet. The innovative methodology is based on the experimental design methodology of the Taguchi design (L9) and the analysis of variance (ANOVA) with objective function of microhardness in brushed layers. A “Signal to Noise” approach is adopted with the objective of “Large is Better”. The speed of rotation of the brush, the speed of advance of the sample, the number of brushing passes, and the depression ratio of the brush fibers are the four three-level factors of the L9 design. The study of the effects of these factors showed the major influence of the depression and the number of passes on the magnitude of hardening of the brushed layers in the various zones of the weld. Minor interactions, found in the regression model, are noted between the different factors. Measurements of microhardness in the depths of each zone reveal distinct cure rates from one zone to another. The melted zone of the weld undergone the minimum hardening, unlike the heat affected zone (HAZ), whose microhardness contribution reaches 30% compared with the non-brushed welded sample. It is revealed that the main results lie in the microhardness contribution, of the order of 30% at the joint, while keeping the same level of magnitude of the mechanical strength using the optimal parameters.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-019-04249-1</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2019-11, Vol.105 (1-4), p.1009-1022 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04508701v1 |
source | SpringerLink Journals |
subjects | Austenitic stainless steels Brushing CAE) and Design Computer-Aided Engineering (CAD Design of experiments Design optimization Engineering Engineering Sciences Hardening Heat affected zone Industrial and Production Engineering Mechanical Engineering Mechanics Media Management Metal sheets Microhardness Original Article Rare gases Regression analysis Regression models Taguchi methods Variance analysis Welded joints |
title | Finishing and quality of mechanically brushed 316L stainless steel welded joints using MIG process: hardness modeling by L9 TAGUCHI design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finishing%20and%20quality%20of%20mechanically%20brushed%20316L%20stainless%20steel%20welded%20joints%20using%20MIG%20process:%20hardness%20modeling%20by%20L9%20TAGUCHI%20design&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Guizani,%20Hichem&rft.date=2019-11-01&rft.volume=105&rft.issue=1-4&rft.spage=1009&rft.epage=1022&rft.pages=1009-1022&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-019-04249-1&rft_dat=%3Cproquest_hal_p%3E2278322837%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2278322837&rft_id=info:pmid/&rfr_iscdi=true |