Symplectic learning for Hamiltonian neural networks

Machine learning methods are widely used in the natural sciences to model and predict physical systems from observation data. Yet, they are often used as poorly understood “black boxes,” disregarding existing mathematical structure and invariants of the problem. Recently, the proposal of Hamiltonian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2023-12, Vol.494, p.112495, Article 112495
Hauptverfasser: David, Marco, Méhats, Florian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112495
container_title Journal of computational physics
container_volume 494
creator David, Marco
Méhats, Florian
description Machine learning methods are widely used in the natural sciences to model and predict physical systems from observation data. Yet, they are often used as poorly understood “black boxes,” disregarding existing mathematical structure and invariants of the problem. Recently, the proposal of Hamiltonian Neural Networks (HNNs) took a first step towards a unified “gray box” approach, using physical insight to improve performance for Hamiltonian systems. In this paper, we explore a significantly improved training method for HNNs, exploiting the symplectic structure of Hamiltonian systems with a different loss function. This frees the loss from an artificial lower bound. We mathematically guarantee the existence of an exact Hamiltonian function which the HNN can learn. This allows us to prove and numerically analyze the errors made by HNNs which, in turn, renders them fully explainable. Finally, we present a novel post-training correction to obtain the true Hamiltonian only from discretized observation data, up to an arbitrary order. •The loss of Hamiltonian Neural Networks suffers from an artificial lower bound.•Using a symplectic integrator during training significantly improves performance.•Rigorous mathematical analysis yields an exact handle on the discretization error.•The learnt Hamiltonian can be corrected post-training, to any arbitrary order.
doi_str_mv 10.1016/j.jcp.2023.112495
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04500505v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999123005909</els_id><sourcerecordid>S0021999123005909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-21f933e2c6a07ab36983970a17d70c2303db3cdd977aa536ef911dc85ade77403</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AG-9emidSdqmwdOyqCsseFDPYTZJNbXbLkld2X9vl4pHTw-G9z2Yj7FrhAwBy9sma8wu48BFhshzVZywGYKClEssT9kMgGOqlMJzdhFjAwBVkVczJl4O213rzOBN0joKne_ek7oPyYq2vh36zlOXdO4rUDvG8N2Hz3jJzmpqo7v6zTl7e7h_Xa7S9fPj03KxTg2vxJByrJUQjpuSQNJGlKoSSgKhtBIMFyDsRhhrlZREhShdrRCtqQqyTsocxJzdTLsf1Opd8FsKB92T16vFWh9vkBcABRR7HLs4dU3oYwyu_gMQ9NGQbvRoSB8N6cnQyNxNjBuf2HsXdDTedcZZH0Yj2vb-H_oHA55s8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Symplectic learning for Hamiltonian neural networks</title><source>Elsevier ScienceDirect Journals</source><creator>David, Marco ; Méhats, Florian</creator><creatorcontrib>David, Marco ; Méhats, Florian</creatorcontrib><description>Machine learning methods are widely used in the natural sciences to model and predict physical systems from observation data. Yet, they are often used as poorly understood “black boxes,” disregarding existing mathematical structure and invariants of the problem. Recently, the proposal of Hamiltonian Neural Networks (HNNs) took a first step towards a unified “gray box” approach, using physical insight to improve performance for Hamiltonian systems. In this paper, we explore a significantly improved training method for HNNs, exploiting the symplectic structure of Hamiltonian systems with a different loss function. This frees the loss from an artificial lower bound. We mathematically guarantee the existence of an exact Hamiltonian function which the HNN can learn. This allows us to prove and numerically analyze the errors made by HNNs which, in turn, renders them fully explainable. Finally, we present a novel post-training correction to obtain the true Hamiltonian only from discretized observation data, up to an arbitrary order. •The loss of Hamiltonian Neural Networks suffers from an artificial lower bound.•Using a symplectic integrator during training significantly improves performance.•Rigorous mathematical analysis yields an exact handle on the discretization error.•The learnt Hamiltonian can be corrected post-training, to any arbitrary order.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2023.112495</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Geometric numerical integration ; Hamiltonian neural network ; Hamiltonian system ; Mathematics ; Ordinary differential equation ; Symplectic numerical method</subject><ispartof>Journal of computational physics, 2023-12, Vol.494, p.112495, Article 112495</ispartof><rights>2023 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c283t-21f933e2c6a07ab36983970a17d70c2303db3cdd977aa536ef911dc85ade77403</cites><orcidid>0000-0001-5673-5389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999123005909$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04500505$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>David, Marco</creatorcontrib><creatorcontrib>Méhats, Florian</creatorcontrib><title>Symplectic learning for Hamiltonian neural networks</title><title>Journal of computational physics</title><description>Machine learning methods are widely used in the natural sciences to model and predict physical systems from observation data. Yet, they are often used as poorly understood “black boxes,” disregarding existing mathematical structure and invariants of the problem. Recently, the proposal of Hamiltonian Neural Networks (HNNs) took a first step towards a unified “gray box” approach, using physical insight to improve performance for Hamiltonian systems. In this paper, we explore a significantly improved training method for HNNs, exploiting the symplectic structure of Hamiltonian systems with a different loss function. This frees the loss from an artificial lower bound. We mathematically guarantee the existence of an exact Hamiltonian function which the HNN can learn. This allows us to prove and numerically analyze the errors made by HNNs which, in turn, renders them fully explainable. Finally, we present a novel post-training correction to obtain the true Hamiltonian only from discretized observation data, up to an arbitrary order. •The loss of Hamiltonian Neural Networks suffers from an artificial lower bound.•Using a symplectic integrator during training significantly improves performance.•Rigorous mathematical analysis yields an exact handle on the discretization error.•The learnt Hamiltonian can be corrected post-training, to any arbitrary order.</description><subject>Geometric numerical integration</subject><subject>Hamiltonian neural network</subject><subject>Hamiltonian system</subject><subject>Mathematics</subject><subject>Ordinary differential equation</subject><subject>Symplectic numerical method</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-AG-9emidSdqmwdOyqCsseFDPYTZJNbXbLkld2X9vl4pHTw-G9z2Yj7FrhAwBy9sma8wu48BFhshzVZywGYKClEssT9kMgGOqlMJzdhFjAwBVkVczJl4O213rzOBN0joKne_ek7oPyYq2vh36zlOXdO4rUDvG8N2Hz3jJzmpqo7v6zTl7e7h_Xa7S9fPj03KxTg2vxJByrJUQjpuSQNJGlKoSSgKhtBIMFyDsRhhrlZREhShdrRCtqQqyTsocxJzdTLsf1Opd8FsKB92T16vFWh9vkBcABRR7HLs4dU3oYwyu_gMQ9NGQbvRoSB8N6cnQyNxNjBuf2HsXdDTedcZZH0Yj2vb-H_oHA55s8w</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>David, Marco</creator><creator>Méhats, Florian</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5673-5389</orcidid></search><sort><creationdate>20231201</creationdate><title>Symplectic learning for Hamiltonian neural networks</title><author>David, Marco ; Méhats, Florian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-21f933e2c6a07ab36983970a17d70c2303db3cdd977aa536ef911dc85ade77403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Geometric numerical integration</topic><topic>Hamiltonian neural network</topic><topic>Hamiltonian system</topic><topic>Mathematics</topic><topic>Ordinary differential equation</topic><topic>Symplectic numerical method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>David, Marco</creatorcontrib><creatorcontrib>Méhats, Florian</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>David, Marco</au><au>Méhats, Florian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symplectic learning for Hamiltonian neural networks</atitle><jtitle>Journal of computational physics</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>494</volume><spage>112495</spage><pages>112495-</pages><artnum>112495</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Machine learning methods are widely used in the natural sciences to model and predict physical systems from observation data. Yet, they are often used as poorly understood “black boxes,” disregarding existing mathematical structure and invariants of the problem. Recently, the proposal of Hamiltonian Neural Networks (HNNs) took a first step towards a unified “gray box” approach, using physical insight to improve performance for Hamiltonian systems. In this paper, we explore a significantly improved training method for HNNs, exploiting the symplectic structure of Hamiltonian systems with a different loss function. This frees the loss from an artificial lower bound. We mathematically guarantee the existence of an exact Hamiltonian function which the HNN can learn. This allows us to prove and numerically analyze the errors made by HNNs which, in turn, renders them fully explainable. Finally, we present a novel post-training correction to obtain the true Hamiltonian only from discretized observation data, up to an arbitrary order. •The loss of Hamiltonian Neural Networks suffers from an artificial lower bound.•Using a symplectic integrator during training significantly improves performance.•Rigorous mathematical analysis yields an exact handle on the discretization error.•The learnt Hamiltonian can be corrected post-training, to any arbitrary order.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2023.112495</doi><orcidid>https://orcid.org/0000-0001-5673-5389</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2023-12, Vol.494, p.112495, Article 112495
issn 0021-9991
1090-2716
language eng
recordid cdi_hal_primary_oai_HAL_hal_04500505v1
source Elsevier ScienceDirect Journals
subjects Geometric numerical integration
Hamiltonian neural network
Hamiltonian system
Mathematics
Ordinary differential equation
Symplectic numerical method
title Symplectic learning for Hamiltonian neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A01%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symplectic%20learning%20for%20Hamiltonian%20neural%20networks&rft.jtitle=Journal%20of%20computational%20physics&rft.au=David,%20Marco&rft.date=2023-12-01&rft.volume=494&rft.spage=112495&rft.pages=112495-&rft.artnum=112495&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2023.112495&rft_dat=%3Celsevier_hal_p%3ES0021999123005909%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021999123005909&rfr_iscdi=true