Observed winter Barents Kara Sea ice variations induce prominent sub-decadal variability and a multi-decadal trend in the Warm Arctic Cold Eurasia pattern
The observed winter Barents-Kara Sea (BKS) sea ice concentration (SIC) has shown a close association with the second empirical orthogonal function (EOF) mode of Eurasian winter surface air temperature (SAT) variability, known as Warm Arctic Cold Eurasia (WACE) pattern. However, the potential role of...
Gespeichert in:
Veröffentlicht in: | Environmental research letters 2024-02, Vol.19 (2), p.24018 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 24018 |
container_title | Environmental research letters |
container_volume | 19 |
creator | Ghosh, Rohit Manzini, Elisa Gao, Yongqi Gastineau, Guillaume Cherchi, Annalisa Frankignoul, Claude Liang, Yu-Chiao Kwon, Young-Oh Suo, Lingling Tyrlis, Evangelos Mecking, Jennifer V Tian, Tian Zhang, Ying Matei, Daniela |
description | The observed winter Barents-Kara Sea (BKS) sea ice concentration (SIC) has shown a close association with the second empirical orthogonal function (EOF) mode of Eurasian winter surface air temperature (SAT) variability, known as Warm Arctic Cold Eurasia (WACE) pattern. However, the potential role of BKS SIC on this WACE pattern of variability and on its long-term trend remains elusive. Here, we show that from 1979 to 2022, the winter BKS SIC and WACE association is most prominent and statistically significant for the variability at the sub-decadal time scale for 5–6 years. We also show the critical role of the multi-decadal trend in the principal component of the WACE mode of variability for explaining the overall Eurasian winter temperature trend over the same period. Furthermore, a large multi-model ensemble of atmosphere-only experiments from 1979 to 2014, with and without the observed Arctic SIC forcing, suggests that the BKS SIC variations induce this observed sub-decadal variability and the multi-decadal trend in the WACE. Additionally, we analyse the model simulated first or the leading EOF mode of Eurasian winter SAT variability, which in observations, closely relates to the Arctic Oscillation (AO). We find a weaker association of this mode to AO and a statistically significant positive trend in our ensemble simulation, opposite to that found in observation. This contrasting nature reflects excessive hemispheric warming in the models, partly contributed by the modelled Arctic Sea ice loss. |
doi_str_mv | 10.1088/1748-9326/ad1c1a |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04498510v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_241e30b203914869af95c7258d26a54f</doaj_id><sourcerecordid>2918574493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-4a061f6d9b36334b1e68af98b8bad8ead04434fcc7176ba9fcc73e00afa2220e3</originalsourceid><addsrcrecordid>eNp1kUtv1DAUhSMEEqWwZ2mJBUIi1K8k9nIYFVoxUheAWFrXj1CPMnGwnan6V_i1OAQNIMHKV8fHn499quo5wW8IFuKCdFzUktH2AiwxBB5UZyfp4R_z4-pJSnuMG9504qz6fqOTi0dn0Z0fs4voLUQ35oQ-QAT00QHyxqEjRA_ZhzEhP9q5KFMMBz8WJ0qzrq0zYGFYfdoPPt8jGC0CdJiH7E_7ubBtQaB869AXiAe0iSZ7g7ZhsOhyjpA8oAlySTI-rR71MCT37Nd6Xn1-d_lpe1Xvbt5fbze72nDW5JoDbknfWqlZyxjXxLUCeim00GCFA4s5Z7w3piNdq0EuE3MYQw-UUuzYeXW9cm2AvZqiP0C8VwG8-imE-FVBLCEHpygnjmFNMZOEi1aWexrT0UZY2kLD-8J6tbJuYfgLdbXZqUUrYaRoCD6S4n2xestffptdymof5jiWpyoqiWi6YmXFhVeXiSGl6PoTlmC1NK-WatVSrVqbL0derkd8mH4zXRwUkYoqTDkmQk12ifv6H87_gn8AeD29Zg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918574493</pqid></control><display><type>article</type><title>Observed winter Barents Kara Sea ice variations induce prominent sub-decadal variability and a multi-decadal trend in the Warm Arctic Cold Eurasia pattern</title><source>Institute of Physics IOPscience extra</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Institute of Physics Open Access Journal Titles</source><source>Free Full-Text Journals in Chemistry</source><creator>Ghosh, Rohit ; Manzini, Elisa ; Gao, Yongqi ; Gastineau, Guillaume ; Cherchi, Annalisa ; Frankignoul, Claude ; Liang, Yu-Chiao ; Kwon, Young-Oh ; Suo, Lingling ; Tyrlis, Evangelos ; Mecking, Jennifer V ; Tian, Tian ; Zhang, Ying ; Matei, Daniela</creator><creatorcontrib>Ghosh, Rohit ; Manzini, Elisa ; Gao, Yongqi ; Gastineau, Guillaume ; Cherchi, Annalisa ; Frankignoul, Claude ; Liang, Yu-Chiao ; Kwon, Young-Oh ; Suo, Lingling ; Tyrlis, Evangelos ; Mecking, Jennifer V ; Tian, Tian ; Zhang, Ying ; Matei, Daniela</creatorcontrib><description>The observed winter Barents-Kara Sea (BKS) sea ice concentration (SIC) has shown a close association with the second empirical orthogonal function (EOF) mode of Eurasian winter surface air temperature (SAT) variability, known as Warm Arctic Cold Eurasia (WACE) pattern. However, the potential role of BKS SIC on this WACE pattern of variability and on its long-term trend remains elusive. Here, we show that from 1979 to 2022, the winter BKS SIC and WACE association is most prominent and statistically significant for the variability at the sub-decadal time scale for 5–6 years. We also show the critical role of the multi-decadal trend in the principal component of the WACE mode of variability for explaining the overall Eurasian winter temperature trend over the same period. Furthermore, a large multi-model ensemble of atmosphere-only experiments from 1979 to 2014, with and without the observed Arctic SIC forcing, suggests that the BKS SIC variations induce this observed sub-decadal variability and the multi-decadal trend in the WACE. Additionally, we analyse the model simulated first or the leading EOF mode of Eurasian winter SAT variability, which in observations, closely relates to the Arctic Oscillation (AO). We find a weaker association of this mode to AO and a statistically significant positive trend in our ensemble simulation, opposite to that found in observation. This contrasting nature reflects excessive hemispheric warming in the models, partly contributed by the modelled Arctic Sea ice loss.</description><identifier>ISSN: 1748-9326</identifier><identifier>EISSN: 1748-9326</identifier><identifier>DOI: 10.1088/1748-9326/ad1c1a</identifier><identifier>CODEN: ERLNAL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Air temperature ; Atmospheric models ; Barents-Kara Sea ice ; Empirical analysis ; Eurasia ; Orthogonal functions ; Sciences of the Universe ; Sea ice ; Statistical analysis ; Surface temperature ; Variability ; Warm Arctic Cold Eurasia ; Winter</subject><ispartof>Environmental research letters, 2024-02, Vol.19 (2), p.24018</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>2024 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c435t-4a061f6d9b36334b1e68af98b8bad8ead04434fcc7176ba9fcc73e00afa2220e3</cites><orcidid>0000-0002-0423-4926 ; 0000-0003-2385-4730 ; 0000-0002-9405-7838 ; 0000-0001-9888-7292 ; 0000-0002-9347-2466 ; 0000-0002-5478-1119 ; 0000-0002-0178-9264 ; 0000-0001-7038-1839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-9326/ad1c1a/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,860,881,2096,27901,27902,38845,38867,53815,53842</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04498510$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghosh, Rohit</creatorcontrib><creatorcontrib>Manzini, Elisa</creatorcontrib><creatorcontrib>Gao, Yongqi</creatorcontrib><creatorcontrib>Gastineau, Guillaume</creatorcontrib><creatorcontrib>Cherchi, Annalisa</creatorcontrib><creatorcontrib>Frankignoul, Claude</creatorcontrib><creatorcontrib>Liang, Yu-Chiao</creatorcontrib><creatorcontrib>Kwon, Young-Oh</creatorcontrib><creatorcontrib>Suo, Lingling</creatorcontrib><creatorcontrib>Tyrlis, Evangelos</creatorcontrib><creatorcontrib>Mecking, Jennifer V</creatorcontrib><creatorcontrib>Tian, Tian</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Matei, Daniela</creatorcontrib><title>Observed winter Barents Kara Sea ice variations induce prominent sub-decadal variability and a multi-decadal trend in the Warm Arctic Cold Eurasia pattern</title><title>Environmental research letters</title><addtitle>ERL</addtitle><addtitle>Environ. Res. Lett</addtitle><description>The observed winter Barents-Kara Sea (BKS) sea ice concentration (SIC) has shown a close association with the second empirical orthogonal function (EOF) mode of Eurasian winter surface air temperature (SAT) variability, known as Warm Arctic Cold Eurasia (WACE) pattern. However, the potential role of BKS SIC on this WACE pattern of variability and on its long-term trend remains elusive. Here, we show that from 1979 to 2022, the winter BKS SIC and WACE association is most prominent and statistically significant for the variability at the sub-decadal time scale for 5–6 years. We also show the critical role of the multi-decadal trend in the principal component of the WACE mode of variability for explaining the overall Eurasian winter temperature trend over the same period. Furthermore, a large multi-model ensemble of atmosphere-only experiments from 1979 to 2014, with and without the observed Arctic SIC forcing, suggests that the BKS SIC variations induce this observed sub-decadal variability and the multi-decadal trend in the WACE. Additionally, we analyse the model simulated first or the leading EOF mode of Eurasian winter SAT variability, which in observations, closely relates to the Arctic Oscillation (AO). We find a weaker association of this mode to AO and a statistically significant positive trend in our ensemble simulation, opposite to that found in observation. This contrasting nature reflects excessive hemispheric warming in the models, partly contributed by the modelled Arctic Sea ice loss.</description><subject>Air temperature</subject><subject>Atmospheric models</subject><subject>Barents-Kara Sea ice</subject><subject>Empirical analysis</subject><subject>Eurasia</subject><subject>Orthogonal functions</subject><subject>Sciences of the Universe</subject><subject>Sea ice</subject><subject>Statistical analysis</subject><subject>Surface temperature</subject><subject>Variability</subject><subject>Warm Arctic Cold Eurasia</subject><subject>Winter</subject><issn>1748-9326</issn><issn>1748-9326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1kUtv1DAUhSMEEqWwZ2mJBUIi1K8k9nIYFVoxUheAWFrXj1CPMnGwnan6V_i1OAQNIMHKV8fHn499quo5wW8IFuKCdFzUktH2AiwxBB5UZyfp4R_z4-pJSnuMG9504qz6fqOTi0dn0Z0fs4voLUQ35oQ-QAT00QHyxqEjRA_ZhzEhP9q5KFMMBz8WJ0qzrq0zYGFYfdoPPt8jGC0CdJiH7E_7ubBtQaB869AXiAe0iSZ7g7ZhsOhyjpA8oAlySTI-rR71MCT37Nd6Xn1-d_lpe1Xvbt5fbze72nDW5JoDbknfWqlZyxjXxLUCeim00GCFA4s5Z7w3piNdq0EuE3MYQw-UUuzYeXW9cm2AvZqiP0C8VwG8-imE-FVBLCEHpygnjmFNMZOEi1aWexrT0UZY2kLD-8J6tbJuYfgLdbXZqUUrYaRoCD6S4n2xestffptdymof5jiWpyoqiWi6YmXFhVeXiSGl6PoTlmC1NK-WatVSrVqbL0derkd8mH4zXRwUkYoqTDkmQk12ifv6H87_gn8AeD29Zg</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Ghosh, Rohit</creator><creator>Manzini, Elisa</creator><creator>Gao, Yongqi</creator><creator>Gastineau, Guillaume</creator><creator>Cherchi, Annalisa</creator><creator>Frankignoul, Claude</creator><creator>Liang, Yu-Chiao</creator><creator>Kwon, Young-Oh</creator><creator>Suo, Lingling</creator><creator>Tyrlis, Evangelos</creator><creator>Mecking, Jennifer V</creator><creator>Tian, Tian</creator><creator>Zhang, Ying</creator><creator>Matei, Daniela</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0423-4926</orcidid><orcidid>https://orcid.org/0000-0003-2385-4730</orcidid><orcidid>https://orcid.org/0000-0002-9405-7838</orcidid><orcidid>https://orcid.org/0000-0001-9888-7292</orcidid><orcidid>https://orcid.org/0000-0002-9347-2466</orcidid><orcidid>https://orcid.org/0000-0002-5478-1119</orcidid><orcidid>https://orcid.org/0000-0002-0178-9264</orcidid><orcidid>https://orcid.org/0000-0001-7038-1839</orcidid></search><sort><creationdate>20240201</creationdate><title>Observed winter Barents Kara Sea ice variations induce prominent sub-decadal variability and a multi-decadal trend in the Warm Arctic Cold Eurasia pattern</title><author>Ghosh, Rohit ; Manzini, Elisa ; Gao, Yongqi ; Gastineau, Guillaume ; Cherchi, Annalisa ; Frankignoul, Claude ; Liang, Yu-Chiao ; Kwon, Young-Oh ; Suo, Lingling ; Tyrlis, Evangelos ; Mecking, Jennifer V ; Tian, Tian ; Zhang, Ying ; Matei, Daniela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-4a061f6d9b36334b1e68af98b8bad8ead04434fcc7176ba9fcc73e00afa2220e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air temperature</topic><topic>Atmospheric models</topic><topic>Barents-Kara Sea ice</topic><topic>Empirical analysis</topic><topic>Eurasia</topic><topic>Orthogonal functions</topic><topic>Sciences of the Universe</topic><topic>Sea ice</topic><topic>Statistical analysis</topic><topic>Surface temperature</topic><topic>Variability</topic><topic>Warm Arctic Cold Eurasia</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Rohit</creatorcontrib><creatorcontrib>Manzini, Elisa</creatorcontrib><creatorcontrib>Gao, Yongqi</creatorcontrib><creatorcontrib>Gastineau, Guillaume</creatorcontrib><creatorcontrib>Cherchi, Annalisa</creatorcontrib><creatorcontrib>Frankignoul, Claude</creatorcontrib><creatorcontrib>Liang, Yu-Chiao</creatorcontrib><creatorcontrib>Kwon, Young-Oh</creatorcontrib><creatorcontrib>Suo, Lingling</creatorcontrib><creatorcontrib>Tyrlis, Evangelos</creatorcontrib><creatorcontrib>Mecking, Jennifer V</creatorcontrib><creatorcontrib>Tian, Tian</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Matei, Daniela</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Environmental research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Rohit</au><au>Manzini, Elisa</au><au>Gao, Yongqi</au><au>Gastineau, Guillaume</au><au>Cherchi, Annalisa</au><au>Frankignoul, Claude</au><au>Liang, Yu-Chiao</au><au>Kwon, Young-Oh</au><au>Suo, Lingling</au><au>Tyrlis, Evangelos</au><au>Mecking, Jennifer V</au><au>Tian, Tian</au><au>Zhang, Ying</au><au>Matei, Daniela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observed winter Barents Kara Sea ice variations induce prominent sub-decadal variability and a multi-decadal trend in the Warm Arctic Cold Eurasia pattern</atitle><jtitle>Environmental research letters</jtitle><stitle>ERL</stitle><addtitle>Environ. Res. Lett</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>19</volume><issue>2</issue><spage>24018</spage><pages>24018-</pages><issn>1748-9326</issn><eissn>1748-9326</eissn><coden>ERLNAL</coden><abstract>The observed winter Barents-Kara Sea (BKS) sea ice concentration (SIC) has shown a close association with the second empirical orthogonal function (EOF) mode of Eurasian winter surface air temperature (SAT) variability, known as Warm Arctic Cold Eurasia (WACE) pattern. However, the potential role of BKS SIC on this WACE pattern of variability and on its long-term trend remains elusive. Here, we show that from 1979 to 2022, the winter BKS SIC and WACE association is most prominent and statistically significant for the variability at the sub-decadal time scale for 5–6 years. We also show the critical role of the multi-decadal trend in the principal component of the WACE mode of variability for explaining the overall Eurasian winter temperature trend over the same period. Furthermore, a large multi-model ensemble of atmosphere-only experiments from 1979 to 2014, with and without the observed Arctic SIC forcing, suggests that the BKS SIC variations induce this observed sub-decadal variability and the multi-decadal trend in the WACE. Additionally, we analyse the model simulated first or the leading EOF mode of Eurasian winter SAT variability, which in observations, closely relates to the Arctic Oscillation (AO). We find a weaker association of this mode to AO and a statistically significant positive trend in our ensemble simulation, opposite to that found in observation. This contrasting nature reflects excessive hemispheric warming in the models, partly contributed by the modelled Arctic Sea ice loss.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-9326/ad1c1a</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0423-4926</orcidid><orcidid>https://orcid.org/0000-0003-2385-4730</orcidid><orcidid>https://orcid.org/0000-0002-9405-7838</orcidid><orcidid>https://orcid.org/0000-0001-9888-7292</orcidid><orcidid>https://orcid.org/0000-0002-9347-2466</orcidid><orcidid>https://orcid.org/0000-0002-5478-1119</orcidid><orcidid>https://orcid.org/0000-0002-0178-9264</orcidid><orcidid>https://orcid.org/0000-0001-7038-1839</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-9326 |
ispartof | Environmental research letters, 2024-02, Vol.19 (2), p.24018 |
issn | 1748-9326 1748-9326 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04498510v1 |
source | Institute of Physics IOPscience extra; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Institute of Physics Open Access Journal Titles; Free Full-Text Journals in Chemistry |
subjects | Air temperature Atmospheric models Barents-Kara Sea ice Empirical analysis Eurasia Orthogonal functions Sciences of the Universe Sea ice Statistical analysis Surface temperature Variability Warm Arctic Cold Eurasia Winter |
title | Observed winter Barents Kara Sea ice variations induce prominent sub-decadal variability and a multi-decadal trend in the Warm Arctic Cold Eurasia pattern |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observed%20winter%20Barents%20Kara%20Sea%20ice%20variations%20induce%20prominent%20sub-decadal%20variability%20and%20a%20multi-decadal%20trend%20in%20the%20Warm%20Arctic%20Cold%20Eurasia%20pattern&rft.jtitle=Environmental%20research%20letters&rft.au=Ghosh,%20Rohit&rft.date=2024-02-01&rft.volume=19&rft.issue=2&rft.spage=24018&rft.pages=24018-&rft.issn=1748-9326&rft.eissn=1748-9326&rft.coden=ERLNAL&rft_id=info:doi/10.1088/1748-9326/ad1c1a&rft_dat=%3Cproquest_hal_p%3E2918574493%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918574493&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_241e30b203914869af95c7258d26a54f&rfr_iscdi=true |