Analysis of Local Creep Strain Field and Cracking Process in Claystone by X-Ray Micro-Tomography and Digital Volume Correlation
X-ray micro-tomography (XMT) is an efficient technique for non-destructive imaging of morphological structures. It is suitable for monitoring local displacement fields of heterogeneous materials. Digital volume correlation (DVC) methods are widely used for the quantification of local strain fields f...
Gespeichert in:
Veröffentlicht in: | Rock mechanics and rock engineering 2021-04, Vol.54 (4), p.1937-1952 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1952 |
---|---|
container_issue | 4 |
container_start_page | 1937 |
container_title | Rock mechanics and rock engineering |
container_volume | 54 |
creator | Shi, Hai-Ling Hosdez, Jerome Rougelot, Thomas Xie, Shou-Yi Shao, Jian-Fu Talandier, Jean |
description | X-ray micro-tomography (XMT) is an efficient technique for non-destructive imaging of morphological structures. It is suitable for monitoring local displacement fields of heterogeneous materials. Digital volume correlation (DVC) methods are widely used for the quantification of local strain fields from highly contrasted XMT images. The aim of this work is to investigate strain localization and cracking process in a hard clayey rock. For this purpose, three-dimensional images have been taken by in situ X-ray micro-tomography on a tested sample under different loading levels and time steps. These images are analyzed with a DVC based method to calculate both local strain fields and averaged global strains. In particular, the progressive localization of strain field with applied stress and creep time is investigated in relation with material heterogeneities. It is found that the strain field localization as well as the cracking process is clearly influenced by the presence of stiff inclusions, pores, weak clayey zones and layered microscopic structure of claystone. |
doi_str_mv | 10.1007/s00603-021-02375-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04495562v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2506115739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-d363b209cb0f662d1236a283ca2ba126a493b66ae304352bcb4af414b1327b523</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpINukfyAnQU89KJU0khwfFzcfhS0t-Si5iZFX3ij1WlvJW_Apf71KXJpbD8PAzPO-MPMSciL4qeC8-pQ5NxwYl6IUVJrpN2QhFCimNNy_JQteSWDSgDwk73J-5Lwsq7MFeVoO2E85ZBo7uoot9rRJ3u_ozZgwDPQi-H5NcViXMbY_w7Ch31Nsfc60bJsepzzGwVM30Xt2jRP9GtoU2W3cxk3C3cP0ov0cNmEs1j9iv9962sSUfI9jiMMxOeiwz_79335E7i7Ob5srtvp2-aVZrlgLdTWyNRhwktet450xci0kGJRn0KJ0KKRBVYMzBj1wBVq61inslFBOgKyclnBEPs6-D9jbXQpbTJONGOzVcmWfZ1ypWmsjf4vCfpjZXYq_9j6P9jHuU_lTtlJzI4SuoC6UnKlyb87Jd_9sBbfPodg5FFtCsS-hWF1EMItygYeNT6_W_1H9AQG_jhQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506115739</pqid></control><display><type>article</type><title>Analysis of Local Creep Strain Field and Cracking Process in Claystone by X-Ray Micro-Tomography and Digital Volume Correlation</title><source>SpringerLink Journals</source><creator>Shi, Hai-Ling ; Hosdez, Jerome ; Rougelot, Thomas ; Xie, Shou-Yi ; Shao, Jian-Fu ; Talandier, Jean</creator><creatorcontrib>Shi, Hai-Ling ; Hosdez, Jerome ; Rougelot, Thomas ; Xie, Shou-Yi ; Shao, Jian-Fu ; Talandier, Jean</creatorcontrib><description>X-ray micro-tomography (XMT) is an efficient technique for non-destructive imaging of morphological structures. It is suitable for monitoring local displacement fields of heterogeneous materials. Digital volume correlation (DVC) methods are widely used for the quantification of local strain fields from highly contrasted XMT images. The aim of this work is to investigate strain localization and cracking process in a hard clayey rock. For this purpose, three-dimensional images have been taken by in situ X-ray micro-tomography on a tested sample under different loading levels and time steps. These images are analyzed with a DVC based method to calculate both local strain fields and averaged global strains. In particular, the progressive localization of strain field with applied stress and creep time is investigated in relation with material heterogeneities. It is found that the strain field localization as well as the cracking process is clearly influenced by the presence of stiff inclusions, pores, weak clayey zones and layered microscopic structure of claystone.</description><identifier>ISSN: 0723-2632</identifier><identifier>EISSN: 1434-453X</identifier><identifier>DOI: 10.1007/s00603-021-02375-5</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Applied geology ; Civil Engineering ; Correlation ; Cracking (chemical engineering) ; Creep (materials) ; Earth and Environmental Science ; Earth Sciences ; Engineering Sciences ; Fields ; Geophysics ; Geophysics/Geodesy ; Inclusions ; Localization ; Mechanics ; Nondestructive testing ; Original Paper ; Sciences of the Universe ; Solid mechanics ; Solifluction ; Strain analysis ; Strain localization ; Tomography ; X ray microtomography ; X rays</subject><ispartof>Rock mechanics and rock engineering, 2021-04, Vol.54 (4), p.1937-1952</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-d363b209cb0f662d1236a283ca2ba126a493b66ae304352bcb4af414b1327b523</citedby><cites>FETCH-LOGICAL-c397t-d363b209cb0f662d1236a283ca2ba126a493b66ae304352bcb4af414b1327b523</cites><orcidid>0000-0002-6632-8207 ; 0000-0003-3602-674X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00603-021-02375-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00603-021-02375-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04495562$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Hai-Ling</creatorcontrib><creatorcontrib>Hosdez, Jerome</creatorcontrib><creatorcontrib>Rougelot, Thomas</creatorcontrib><creatorcontrib>Xie, Shou-Yi</creatorcontrib><creatorcontrib>Shao, Jian-Fu</creatorcontrib><creatorcontrib>Talandier, Jean</creatorcontrib><title>Analysis of Local Creep Strain Field and Cracking Process in Claystone by X-Ray Micro-Tomography and Digital Volume Correlation</title><title>Rock mechanics and rock engineering</title><addtitle>Rock Mech Rock Eng</addtitle><description>X-ray micro-tomography (XMT) is an efficient technique for non-destructive imaging of morphological structures. It is suitable for monitoring local displacement fields of heterogeneous materials. Digital volume correlation (DVC) methods are widely used for the quantification of local strain fields from highly contrasted XMT images. The aim of this work is to investigate strain localization and cracking process in a hard clayey rock. For this purpose, three-dimensional images have been taken by in situ X-ray micro-tomography on a tested sample under different loading levels and time steps. These images are analyzed with a DVC based method to calculate both local strain fields and averaged global strains. In particular, the progressive localization of strain field with applied stress and creep time is investigated in relation with material heterogeneities. It is found that the strain field localization as well as the cracking process is clearly influenced by the presence of stiff inclusions, pores, weak clayey zones and layered microscopic structure of claystone.</description><subject>Applied geology</subject><subject>Civil Engineering</subject><subject>Correlation</subject><subject>Cracking (chemical engineering)</subject><subject>Creep (materials)</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Engineering Sciences</subject><subject>Fields</subject><subject>Geophysics</subject><subject>Geophysics/Geodesy</subject><subject>Inclusions</subject><subject>Localization</subject><subject>Mechanics</subject><subject>Nondestructive testing</subject><subject>Original Paper</subject><subject>Sciences of the Universe</subject><subject>Solid mechanics</subject><subject>Solifluction</subject><subject>Strain analysis</subject><subject>Strain localization</subject><subject>Tomography</subject><subject>X ray microtomography</subject><subject>X rays</subject><issn>0723-2632</issn><issn>1434-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1r3DAQhkVpINukfyAnQU89KJU0khwfFzcfhS0t-Si5iZFX3ij1WlvJW_Apf71KXJpbD8PAzPO-MPMSciL4qeC8-pQ5NxwYl6IUVJrpN2QhFCimNNy_JQteSWDSgDwk73J-5Lwsq7MFeVoO2E85ZBo7uoot9rRJ3u_ozZgwDPQi-H5NcViXMbY_w7Ch31Nsfc60bJsepzzGwVM30Xt2jRP9GtoU2W3cxk3C3cP0ov0cNmEs1j9iv9962sSUfI9jiMMxOeiwz_79335E7i7Ob5srtvp2-aVZrlgLdTWyNRhwktet450xci0kGJRn0KJ0KKRBVYMzBj1wBVq61inslFBOgKyclnBEPs6-D9jbXQpbTJONGOzVcmWfZ1ypWmsjf4vCfpjZXYq_9j6P9jHuU_lTtlJzI4SuoC6UnKlyb87Jd_9sBbfPodg5FFtCsS-hWF1EMItygYeNT6_W_1H9AQG_jhQ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Shi, Hai-Ling</creator><creator>Hosdez, Jerome</creator><creator>Rougelot, Thomas</creator><creator>Xie, Shou-Yi</creator><creator>Shao, Jian-Fu</creator><creator>Talandier, Jean</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6632-8207</orcidid><orcidid>https://orcid.org/0000-0003-3602-674X</orcidid></search><sort><creationdate>20210401</creationdate><title>Analysis of Local Creep Strain Field and Cracking Process in Claystone by X-Ray Micro-Tomography and Digital Volume Correlation</title><author>Shi, Hai-Ling ; Hosdez, Jerome ; Rougelot, Thomas ; Xie, Shou-Yi ; Shao, Jian-Fu ; Talandier, Jean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-d363b209cb0f662d1236a283ca2ba126a493b66ae304352bcb4af414b1327b523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied geology</topic><topic>Civil Engineering</topic><topic>Correlation</topic><topic>Cracking (chemical engineering)</topic><topic>Creep (materials)</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Engineering Sciences</topic><topic>Fields</topic><topic>Geophysics</topic><topic>Geophysics/Geodesy</topic><topic>Inclusions</topic><topic>Localization</topic><topic>Mechanics</topic><topic>Nondestructive testing</topic><topic>Original Paper</topic><topic>Sciences of the Universe</topic><topic>Solid mechanics</topic><topic>Solifluction</topic><topic>Strain analysis</topic><topic>Strain localization</topic><topic>Tomography</topic><topic>X ray microtomography</topic><topic>X rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Hai-Ling</creatorcontrib><creatorcontrib>Hosdez, Jerome</creatorcontrib><creatorcontrib>Rougelot, Thomas</creatorcontrib><creatorcontrib>Xie, Shou-Yi</creatorcontrib><creatorcontrib>Shao, Jian-Fu</creatorcontrib><creatorcontrib>Talandier, Jean</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Rock mechanics and rock engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Hai-Ling</au><au>Hosdez, Jerome</au><au>Rougelot, Thomas</au><au>Xie, Shou-Yi</au><au>Shao, Jian-Fu</au><au>Talandier, Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Local Creep Strain Field and Cracking Process in Claystone by X-Ray Micro-Tomography and Digital Volume Correlation</atitle><jtitle>Rock mechanics and rock engineering</jtitle><stitle>Rock Mech Rock Eng</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>54</volume><issue>4</issue><spage>1937</spage><epage>1952</epage><pages>1937-1952</pages><issn>0723-2632</issn><eissn>1434-453X</eissn><abstract>X-ray micro-tomography (XMT) is an efficient technique for non-destructive imaging of morphological structures. It is suitable for monitoring local displacement fields of heterogeneous materials. Digital volume correlation (DVC) methods are widely used for the quantification of local strain fields from highly contrasted XMT images. The aim of this work is to investigate strain localization and cracking process in a hard clayey rock. For this purpose, three-dimensional images have been taken by in situ X-ray micro-tomography on a tested sample under different loading levels and time steps. These images are analyzed with a DVC based method to calculate both local strain fields and averaged global strains. In particular, the progressive localization of strain field with applied stress and creep time is investigated in relation with material heterogeneities. It is found that the strain field localization as well as the cracking process is clearly influenced by the presence of stiff inclusions, pores, weak clayey zones and layered microscopic structure of claystone.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00603-021-02375-5</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6632-8207</orcidid><orcidid>https://orcid.org/0000-0003-3602-674X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0723-2632 |
ispartof | Rock mechanics and rock engineering, 2021-04, Vol.54 (4), p.1937-1952 |
issn | 0723-2632 1434-453X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04495562v1 |
source | SpringerLink Journals |
subjects | Applied geology Civil Engineering Correlation Cracking (chemical engineering) Creep (materials) Earth and Environmental Science Earth Sciences Engineering Sciences Fields Geophysics Geophysics/Geodesy Inclusions Localization Mechanics Nondestructive testing Original Paper Sciences of the Universe Solid mechanics Solifluction Strain analysis Strain localization Tomography X ray microtomography X rays |
title | Analysis of Local Creep Strain Field and Cracking Process in Claystone by X-Ray Micro-Tomography and Digital Volume Correlation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Local%20Creep%20Strain%20Field%20and%20Cracking%20Process%20in%20Claystone%20by%20X-Ray%20Micro-Tomography%20and%20Digital%20Volume%20Correlation&rft.jtitle=Rock%20mechanics%20and%20rock%20engineering&rft.au=Shi,%20Hai-Ling&rft.date=2021-04-01&rft.volume=54&rft.issue=4&rft.spage=1937&rft.epage=1952&rft.pages=1937-1952&rft.issn=0723-2632&rft.eissn=1434-453X&rft_id=info:doi/10.1007/s00603-021-02375-5&rft_dat=%3Cproquest_hal_p%3E2506115739%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506115739&rft_id=info:pmid/&rfr_iscdi=true |